ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs

» B-trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Symbol table review

guarantee average case
ordered

. search . ops?
search insert delete hit insert delete
N N N N N N

implementation

sequential search
(unordered list)

binary search

(ordered array) log N N N log N N N v

BST N N N log N log N VN v
goal log N log N log N log N v

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

key
interface

equals()

compareTo()

compareTo()

compareTo(Q)

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2-3 tree

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

Allow 1 or 2 keys per node.
» 2-node: one key, two children.
« 3-node: two keys, three children.

3-node

N\

smaller than E
larger than J

between E and J null link

2-3 tree demo

Search.
« Compare search key against keys in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for H

2-3 tree demo: insertion

Insert into a 2-node at bottom.
« Search for key, as usual.
« Replace 2-node with 3-node.

K is less than M
(go left)

« @

insert K

2-3 tree demo: insertion

Insert into a 2-node at bottom.
« Search for key, as usual.
« Replace 2-node with 3-node.

insert K

K is greater than J
(go right)

2-3 tree demo: insertion

Insert into a 2-node at bottom.
« Search for key, as usual.
« Replace 2-node with 3-node.

insert K

(e 1) O,
(acy (W x(@ (P (5X)

search ends here

2-3 tree demo: insertion

Insert into a 2-node at bottom.
« Search for key, as usual.
« Replace 2-node with 3-node.

insert K

(e1) O,
(ac) (W) x(@® (P (%)

replace 2-node with
3-node containing K

2-3 tree demo: insertion

Insert into a 2-node at bottom.
« Search for key, as usual.
« Replace 2-node with 3-node.

insert K

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

Z is greater than M
(go right)

(M) 2

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

Zis greater than R
(go right)

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

(e1) O,
(ac) (W) (kD) (P) @B 2

search ends here

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

D O,
(ac) (W) (kD) (P) GG 2

replace 3-node with
temporary 4-node containing Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

split 4-node into two 2-nodes
(pass middle key to parent)

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.
« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

(Ac) GHBY L (5X)

convert 3-node into 4-node

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.
« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.

« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.
« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.
« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.
« If you reach the root and it's a 4-node, split it into three 2-nodes.

height of tree increases by 1

insert L 0

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.

« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L G

2-3 tree: insertion

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.
Insertion into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent. 2b C) — (b)
« Repeat up the tree, as necessary. ONG)
« If you reach the root and it's a 4-node, split it into three 2-nodes.

Practice: draw the 2-3 tree construction for SEARCH

2-3 tree demo: construction

insert S

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert E

- 8

convert 2-node into 3-node

2-3 tree demo: construction

insert E

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert A

"SR

convert 3-node into 4-node

2-3 tree demo: construction

insert A

2-3 tree demo: construction

insert A

split 4-node
(move E to parent)

2-3 tree demo: construction

insert A

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction 2-3 tree demo: construction

insert R insert R

convert 2-node into 3-node

2-3 tree demo: construction 2-3 tree demo: construction

2-3 tree insert C

convert 2-node into 3-node

2-3 tree demo: construction

insert C

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert H

convert 3-node into 4-node

2-3 tree demo: construction

insert H

2-3 tree demo: construction

insert H

split 4-node
(move R to parent)

2-3 tree demo: construction

insert H

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert X

><

convert 2-node into 3-node

2-3 tree demo: construction

insert X

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert M

(ac) WM sx)

convert 2-node into 3-node

2-3 tree demo: construction

insert M

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert P

(ac) GHW P (5X)

convert 3-node into 4-node

2-3 tree demo: construction

insert P

2-3 tree demo: construction

insert P

split 4-node
(move L to parent)

2-3 tree demo: construction 2-3 tree demo: construction

insert P insert P

split 4-node
(move M to parent)

2-3 tree demo: construction 2-3 tree demo: construction

insert P 2-3 tree

2-3 tree demo: construction

insert L

convert 2-node into 3-node

2-3 tree demo: construction

insert L

convert 2-node into 3-node

2-3 tree demo: construction

2-3 tree

2-3 tree: global properties

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

root parentis a 3-node

b ,
B = i @O X'
(abc) @ ©Q
@ . D middle (@ e) .
@ Q b c (B) ()
right (a) - (a o) right (@ b) (a b d)
(b c d (b) () (c d e (c)

|

=Y

l

©

2-3 tree: performance

Splitting a 4-node is a local transformation: constant number of operations.

b cd

less between between
than a aandb b and c

between between greater
candd dande than e

(b (d)

less between\ /between\ /between\, /between greater
than a aandb b and c candd dande than e

Balanced search trees: quiz 1

What is the height of a 2-3 tree with N keys in the worst case?

A ~logs N
B ~loga N
C. ~2logz N
D.

~N

m

Idon't know.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

* Worst case: IgN. [all 2-nodes]
logs N ~.6311g N. [all 3-nodes]
« Between 12 and 20 for a million nodes.

« Best case:

» Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

ST implementations: summary

ual e average case
implementation
° fele
sequential search
(unordered list) &y By &y By &y &
binary search
(ordered array) log N N N log N N N
BST N N N log N log N VN
2-3 tree log N log N log N log N log N log N

but hidden constant is large
(depends upon implementation)

ordered

ops?

key
interface

equals ()

compareTo()

compareTo()

compareTo(Q)

2-3 tree: implementation?

Direct implementation is complicated, because:
« Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.
* Need to move back up the tree to split 4-nodes.
e Large number of cases for splitting.

“ Beautiful algorithms are not always the most useful. ”’
— Donald Knuth

Bottom line. Could do it, but there's a better way.

3.3 BALANCED SEARCH TREES

» red-black BSTs
Algorithms \

left-leaning version optimized for teaching and coding;
developed by Bob Sedgewick in creating this course!

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
« No way to tell a 3-node from a 2-node.
« Cannot map from BST back to 2-3 tree.

Approach 2. Regular BST with red "glue" nodes.
« Wastes space, wasted link.
« Code probably messy.

Approach 3. Regular BST with red "glue" links.
« Widely used in practice.
« Arbitrary restriction: red links lean left.

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node M}‘\\ larger key is root
less between greater greater

than a aandb than b than b
less between
than a aandb

black links connect

red links "glue"
nodes within a 3-node

2-nodes and 3-nodes

2-3 tree corresponding red-black BST

Leftleaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

Definition of left-leaning red-black tree

A BST such that:
» No node has two red links connected to it.
« Every path from root to null link has the same number of black links.
* Red links lean left. N

"perfect black balance"

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because
of better balance

public Value get(Key key)

{
Node x = root;
while (x !'= null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

Red-black BST representation

Q. How to represent color of links in Java data structure?

Each node is pointed to by precisely one link (from its parent) =
can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node x

{ h.left.color < b
A .right.color
Key key; is RED (® .~ is BLACK
Value val; O
Node left, right; Q @ @
boolean color; // color of parent Tink
}
private boolean isRed(Node x)
{
if (x == null) return false;

return x.color == RED;
}

null links are black

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(before)

less
than E

between greater
Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

ft
(aften private Node rotateLeft(Node h)
{
x assert isRed(h.right);
Node x = h.right;
h h.right = x.left;
greater x.left = h;
than S x.color = h.color;
h.color = RED;
less between return x;
than E Eand S 1

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before)
h
X
greater
than S
less between
than E Eand S

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

ft
Ei) private Node rotateRight(Node h)
{
x assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less x.right = h;
than E x.color = h.color;
h.color = RED;
between greater return x;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

less between between
than A Aand E Eand S

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node h)

{
assert !isRed(h);
assert isRed(h.left);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater 1
than A Aand E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

Insertion into a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root

™\ search ends
at this null link

root
7

@ red link to
a ~O new node

containing a
converts 2-node
to 3-node

i root

Ve
search ends
““at this null link

attached new node
<~ with red link

root
Ve

rotated left

9 ™ to make a
legal 3-node

Insertion into a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

@ search ends
at this

e null link

smaller between

@f search ends
“at this null link

8°

N search ends
at this null link e
e © attached new
~ de with
attached new (b) ”ﬁf{; 1?,,’;\.]
Q .~ node with Q
red link attached new
e e e ™~ node with (<
red link (bJ
rotated (@7 ™ rotated ifi
@ « right
e G @ /mm,rm(
colors flipped right
«~ to black (a) O]
9 G colors flipped colors fli
E s flipped
G (OA 1o black (02 o~ 10 black

Insertion into a LLRB tree

General case.
« Do standard BST insert; color new link red. «——
« Repeat until needed:
— (Only) right link red: rotate left.
- Two left red links in a row: rotate right. | <, fix color invariants
- Both children red: flip colors.

to maintain symmetric order
and perfect black balance

two lefts in a row

inserting H
so rotate right

CEEDORE =
(Al (RY

1d .
add new
node here ’ G m
right link red e
so rotate left
both children red)
so flip colors e

Insertion into a LLRB tree: passing red links up the tree

Ceneral case.
. Do standard BST insert; color new link red. «—— ‘G symmetric order
« Repeat until needed:
— (Only) right link red: rotate left.
— Two left red links in a row: rotate right. | < 1 fix color invariants
— Both children red: flip colors.

inserting P

both children red
so flip colors

SCU 05— both childrer
(P) redso

flip colors

‘ two lefts in a row

add new
node here

right link red so rotate right

so rotate left
N

both children red
so flip colors

Red-black BST construction practice: SEARCH

insert S

2

« Do standard BST insert; color new link red.
@ « Repeat until needed:
— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert S

R

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

insert E

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

insert A

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two left reds in a row
(rotate S right)

insert A

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

both children red
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

both children red
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert R

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert C

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

right link red
(rotate A left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert H

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

two left reds in a row
(rotate S right)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

both children red
(flip colors)

« Do standard BST insert; color new link red.

« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

right link red
(rotate E left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert X

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert X

right link red
(rotate S left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert M

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

insert M

right link red
(rotate H left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert P

two red children
(flip colors)

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

right link red
(rotate E left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

Red-black BST construction demo

two left reds in a row
(rotate R right)

Do standard BST insert; color new link red.
Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

- Both children red: flip colors.

two red children
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two red children
(flip colors)

Do standard BST insert; color new link red.

Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

- Both children red: flip colors.

Insertion into a LLRB tree: Java implementation

Same code for all cases. ;{Q

« Right child red, left child black: rotate left. .
h

« Left child, left-left grandchild red: rotate right. < lef h

« Both children red: flip colors. . e ;&
N\ right

rotate ﬂ"[’

;Ié\g colors
private Node put(Node h, Key key, Value val)

{
t bott
if (h == null) return new Node(key, val, RED); I(::Z"c;m?‘ :Jen;)

int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;

if (isRed(h.right) & !isRed(h.left)) h = rotateLeft(h); <——— lean left
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); «——— balance 4-node
if (isRed(h.left) && isRed(h.right)) flipColors(h); <«—— split 4-node

return h; T
3} only a few extra lines of code provides near-perfect balance

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

Insertion into a LLRB tree: visualization

N =255
max = 8
avg = 7.0

opt=7.0

Ao 0 O

255 insertions in ascending order

128

Insertion into a LLRB tree: visualization

N =255
max = 8
avg =7.0
opt=7.0

A

SAAGAOAAAARAT

A

255 insertions in descending order

129

Insertion into a LLRB tree: visualization

N =255
max = 10

255 random insertions

130

Balanced search trees: quiz 2

What is the height of a LLRB tree with N keys in the worst case?

A. ~logs N

B ~loga N

C. ~2log:N
D ~N

E Idon't know.

Balance in LLRB trees

Proposition. Height of tree is < 21g N in the worst case.

Pf.
« Black height = height of corresponding 2-3 tree < IgN.
» Never two red links in-a-row.

Property. Height of tree is ~ 1.0 1g N in typical applications.

132

ST implementations: summary

guarantee average case
imol . ordered key
implementation ops? interface
search
search . nsert delete
hit
N

sequential search

(unordered list) N N N N N equals()
(:i;agr!g:e::;;’) log N N N log N N N v compareTo()
BST N N N log N log N VN v compareTo()
2-3 tree log N log N log N log N log N log N v compareTo()

AN

compareTo()

red-black BST logN logN logN logN

hidden constant c is small
(at most 2 Ig N compares)

War story: why red-black?

Xerox PARC innovations. [1970s]
« Alto.
. GUI.
Ethernet. XEROX.
Smalltalk.
InterPress.

« Laser printing.

Bitmapped display. Xerox Alto
+ WYSIWYG text editor.

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Robert Sedgewick®
Program in Computer Science
and Brown Unisersity
Providence, R. I

ABSTRACT

T this paper we present a ani
and study of halaneed free al

work for the
We show how 1o i

implementations which are notable for their brevity. One
implementation is examined carcfully, and some propertics about its

134

War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
« Red-Black BST.
« Exceeding height limit of 80 triggered error-recovery process.

show allow for for up to 240 keys
did not rebalance

/ BST during delete

« Main cause = height bound exceeded!

« Telephone company sues database provider.

« Legal testimony:

Extended telephone service outage.

“ If implemented properly, the height of a red—black BST
with N keys is at most 2 Ig N. ” — expert witness

e~

3.3 BALANCED SEARCH TREES

» B-trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

A type of Balanced tree (co-)invented by
Rudolf Bayer while working at Boeing

http://algs4.cs.princeton.edu

File system model

Page. Contiguous block of data (e.g., a 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

slow fast

Property. Time required for a probe is much larger than time to access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

Search in a B-tree

» Start at root.
« Check if node contains key.
« Otherwise, find interval for search key and take corresponding link.

could use binary search
(but all ops are considered free)

(vwxyz)

(ACDF

) (ukito) (QrT)

a B-tree (M = 6)

139

B-trees (Bayer-McCreight, 1972)

(LEOEING

B-tree. Generalize 2-3 trees by allowing up to M keys per node.
o Atleast | M/2] keys in all nodes (except root).
choose M as large as
« Every path from root to leaf has same number of links. possible so that M keys

fitin a page
(M =1,024 is typical)

(kLo) CQRT)

a B-tree (M = 6)

(Vwx vz)

CACDF)

138

Insertion in a B-tree

« Search for new key.

« Insert at bottom.

« Split nodes with M+ 1 keys on the way back up the B-tree
(moving middle key to parent).

(Vwxvyz)

(ACDF) (|JKLO) (QRT)

a B-tree (M = 6)

140

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between ~logx N and ~ log 2 N probes.

Pf. All nodes (except possibly root) have between | M/2 | and M keys.

In practice. Number of probes is at most 4. <—— M=1024; N =62 billion
loguz N < 4

Balanced search trees: quiz 3

What of the following does the B in B-tree not mean?

A. Bayer

B. Balanced
C. Binary

D. Boeing

E. Idon't know.

“ the more you think about what the B in B-trees could mean,
the more you learn about B-trees and that is good.
— Rudolph Bayer

142

Balanced trees in the wild

Red-Black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.
e Linux kernel: completely fair scheduler, Tinux/rbtree.h.
» Emacs: conservative stack scanning.

B-tree cousins. B+ tree, B*tree, B# tree, ...

B-trees (and cousins) are widely used for file systems and databases.
« Windows: NTFS.
« Mac: HFS, HFS+.
o Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.
« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

@ ‘ B ORACLE
Mac h"bes DATABASE

