A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

» APl and elementary implementations
» binary heaps
» heapsort

} L V-
See video/book/booksite

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

» APl and elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

stack PusH, Pop linked list, resizing array

queue ENQUEUE, DEQUEUE linked list, resizing array
priority queue INSERT, DELETE-MAX binary heap
symbol table PuT, GET, DELETE binary search tree, hash table

set ADD, CONTAINS, DELETE binary search tree, hash table

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

return

Generalizes: stack, queue, randomized queue.

operation argument 1,
insert P
insert Q
insert E

remove max Q
insert X
insert A
insert M

remove max X
insert P
insert L
insert E

remove max P

Priority queue API

Requirement. Items

public class

are generic; they must also be Comparable.

Key must be Comparable
/ (bounded type parameter)

MaxPQ<Key extends Comparable<Key>>

void

Key

boolean

MaxPQ() create an empty priority queue
insert(Key v) insert a key into the priority queue
deTMax() return and remove a largest key
isEmpty () is the priority queue empty?

Note. Duplicate keys allowed; de1lMax() picks any maximum key.

Priority queue: applications

« Event-driven simulation. [customers in a line, colliding particles]
« Numerical computation. [reducing roundoff error]
e Discrete optimization. [bin packing, scheduling]
« Artificial intelligence. [A* search]
« Computer networks. [web cache]
e Operating systems. [load balancing, interrupt handling]
o Data compression. [Huffman codes]
e Graph searching. [Dijkstra's algorithm, Prim's algorithm]
« Number theory. [sum of powers]
o Spam filtering. [Bayesian spam filter]
o Statistics. [online median in data stream |
. 81 4| 7
EEC 1156

Priority queue: client example

Challenge. Find the largest M items in a stream of N items.
« Fraud detection: isolate $$ transactions. \
« NSA monitoring: flag most suspicious documents. N huge, M large

Constraint. Not enough memory to store N items.

Q. Would you use a MaxPQ or a MinPQ?

Transaction data
type is Comparable

/ (ordered by $9)

MinPQ<Transaction> pg = new MinPQ<Transaction>();

while (StdIn.hasNextLine())
{
String line = StdIn.readLine();
Transaction transaction = new Transaction(line);
pg.insert(transaction);
it (pg.size() > M)

i _ pg how contains
pg.delMin(); — largest M items

Priority queue: unordered and ordered array implementation

. return . contents contents
operation argument .y, Siz€ (unordered) (ordered)
insert P 1 P P
insert Q p) P Q P Q
insert E 3 P Q E E P Q
remove max Q 2 P E E P
insert X 3 P E X E P X
insert A 4 P E X A A E P X
insert M 5 P E X A M A E M P X
remove max X 4 P E M A A E M P
insert P 5 P E M A P A E M P P
insert L 6 P E M A P L A E L M P P
insert E V4 P E M A P L E A E E L M P
remove max P 6 E M A P L E A E E L M P

A sequence of operations on a priority queue

Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

implementation insert del max -

unordered array

ordered array N 1 1

order of growth of running time for priority queue with N items

2.4 PRIORITY QUEUES

» binary heaps
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete binary tree with N = 16 nodes (height = 4)

Property. Height of complete binary tree with N nodes is |lg NV].

11

A complete binary tree in nature

12

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
« Keys in nodes.
o Parent's key no smaller than
children's keys.

Array representation.
e Indices startat 1.
« Take nodes in level order.
« No explicit links needed!

I H G

Heap representations

13

Binary heap: properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.
« Parent of node at k is at k/2.
o Children of node at k are at 2k and 2k+1.

Heap representations

I H G

14

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

15

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

insert S

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

insert S

violates heap order
(swim up)

11

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

insert S

violates heap order
(swim up)

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

insert S

violates heap order
(swim up)

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

remove the maximum

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

remove the maximum

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

remove the maximum

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

remove the maximum

violates heap order
1 D p— (sink down)

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

remove the maximum

violates heap order

e D E— (sink down)

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

remove the maximum

violates heap order

e D E— (sink down)

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

Binary heap: promotion

Scenario. A key becomes larger than its parent's key.

To eliminate the violation:

« Exchange key in child with key in parent.
« Repeat until heap order restored.

private void swim(int k)

{

() (™)
while (k > 1 && -IeSS(k/Z y k)) G o @ ‘Gﬁvgolaieijllzfzap ([))rder '
{ arger key than paren
exch(k, k/2); 1
k = k/2; (D

2
parent of node at k is at k/2 e
} @}@ oo

Peter principle. Node promoted to level of incompetence.

29

Binary heap: insertion

Insert. Add node at end, then swim it up.

Cost. At most 1 +1g N compares.

public void insert(Key x)
{

pg[++N] = x;

swim(N) ;

insert

- add key to heap

violates heap order

30

Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children’s.
o) _ why not smaller child?
To eliminate the violation: o
« Exchange key in parent with key in larger child.
« Repeat until heap order restored.

private void sink(int k) ﬁgﬁfﬁﬁﬁgﬂ)
{ ()
A 2
hile Gok <= T o =
{ & o
int j = 2*k; / / ® @
if (J < N && Tess(j, j+1)) J++; o
1f (!less(k, j)) break; 2 R
exch(k, j);
- y 10
; e ©
} Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

31

Binary heap: demotion

Q. Write a recursive version of sink

private void sink(int k) private void sink(int k)
{ {
while (2*k <= N) if (2%k > N)
{ return;
int j = 2%k; int j = 2%k;
1f (J < N && Tless(j, j+1)) J++; 1f (J < N & Tless(j, j+1)) J++;
if (!less(k, j)) break; if (!less(k, j)) return;
exch(k, 73); exch(k, 73);
k =733 sink(3);
} }
3

This is just an exercise. No particular reason to implement this recursively.

In fact, many compilers will automatically convert the recursive version to
the iterative one. This is called tail-call elimination or tail-call optimization.

32

Binary heap: delete the maximum

Delete max. Exchange root with node at end, then sink it down.
Cost. At most 2 1g N compares.

remove the maximum @ <« key to remove
(5) Q
public Key delMax() m o h
exchange ke
{ G o e @ - Withgooty

violates

Key max = pql[l];

exch(1l, N--); @ heap order
sink (1) ; (5] (R)
pg[N+1] = null; «——prevent loitering 0) 2
return max; remove noae

} G o G T — fromheag

sink down

33

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{

private Key[] pq;

private int N;

pubTic MaxPQ(int capacity) <L} fixed capacity

{ pq = (Key[]) new Comparable[capacity+1]; } 179 Smple)

public boolean isEmpty() < PQ ops

{ return N ==0; }

public void insert(Key key) // see previous code

public Key delMax() // see previous code

private void swim(int k) // see previous code E L heap helper functions

private void sink(int k) // see previous code

private boolean less(int 1, int j)

{ return pql[i].compareTo(pql[j]l) < 0; } _
<«——F— array helper functions

private void exch(int i, int j)
{ Key t = pql[il; pqlil = paljl; palj]l = t; 1}

Priority queue: implementations cost summary

implementation insert del max -

unordered array

ordered array N 1 1

order-of-growth of running time for priority queue with N items

35

Delete-random from a binary heap

Problem. Delete a random key from a binary heap in logarithmic time.

36

Delete-random from a binary heap

Problem. Delete a random key from a binary heap in logarithmic time.

Solution.
e Pick a random index r between 1 and N.
e Perform exch(r, N--).
o Perform either sink(r) or swim(r).

37

Delete-random from a binary heap

Problem. Delete a random key from a binary heap in logarithmic time.

Solution.
e Pick a random index r between 1 and N.
e Perform exch(r, N--).
o Perform either sink(r) or swim(r).

38

Binary heap: practical improvements

Multiway heaps.
« Complete d-way tree.
« Parent's key no smaller than its children's keys.

Fact. Height of complete d-way tree on N nodes is ~logs N.

pad

(1) 9 ONO
HHOOOOOOMm OM®MO

3-way heap

39

Priority queue: implementation cost summary

implementation insert del max -

unordered array

ordered array N
binary heap log N
d-ary heap loga N

log N

dloga N

log N T

log N

1+ amortized

order-of-growth of running time for priority queue with N items

<«—— sweet spot: d =4

<—— why impossible?

40

Binary heap: considerations

Underflow and overflow.
« Underflow: throw exception if deleting from empty PQ.
« Overflow: use resizing array.

Minimum-oriented priority queue.
o Replace Tess() with greater().
e Implement greater().

Other operations.
« Remove an arbitrary item. can implement efficiently
« Change the priority of an item. with sink () and swim(Q)

Immutability of keys.
« Assumption: client does not change keys while they're on the PQ.
e Best practice: use immutable keys.

41

Immutability: implementing in Java

Immutable data type. Can't change the data type value once created.

Examples: String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable: StringBuilder, Stack, Counter, Java array.

To create your own immutable data types:
« Make defensive copy of client-provided mutable variables in constructor

« Don’t change instance variables in instance methods

Immutability: properties

Data type. Set of values and operations on those values.

Immutable data type. Can't change the data type value once created.

Advantages.
« Simplifies debugging.
« Simplifies concurrent programming.
« More secure in presence of hostile code.

« Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“ Classes should be immutable unless there's a very good reason
to make them mutable. ... If a class cannot be made immutable,
you should still limit its mutability as much as possible. ”

— Joshua Bloch (Java architect)

p Java SEG
el

Effective Java

Second Edition

43

2.4 PRIORITY QUEUES

» heapsort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Priority queues: quiz 4

Verify that this is a correct sorting algorithm. What are its properties?

public void sort(String[] a)

{
int N = a.length;
MaxPQ<String> pg = new MaxPQ<String>();
for (int i = 0; 1 < N; i++)
pg.insert(ali]);
for (int i = N-1; i >= 0; 1i--)
ali] = pg.delMax();
}

A. Nlog N compares in the worst case.
B. In-place.

C. Stable.

D. All of the above.

E. [Idon't know.

Heapsort

Basic plan for in-place sort.
« View input array as a complete binary tree.
e Heap construction: build a max-heap with all N keys.
e Sortdown: repeatedly remove the maximum key.

keys in arbitrary order build max heap sorted result
(in place) (in place)
LA
°E S E
4 L 5 M 6 0 7 p

S O RTE X A M P L E X T S P L R A MO E E A E E L M OP R S T X

46

Heapsort demo

Heap construction. Build max heap using bottom-up method.

N

assume array entries are indexed 1 to N

array in arbitrary order

47

Heapsort demo

Heap construction. Build max heap using bottom-up method.

N

we assume array entries are indexed 1 to N

array in arbitrary order

Heapsort demo

Heap construction. Build max heap using bottom-up method.

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 5

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 5

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 5

3-node heap

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 4

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 4

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 3

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 3

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 3

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 2

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 2

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 2

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 2

7-node heap

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 1

Heapsort demo

Heap construction. Build max heap using bottom-up method.

sink 1

Heapsort demo

Heap construction. Build max heap using bottom-up method.

. 11-node hea
end of construction phase \pA

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

exchange 1 and 11

x T S P L R A M O E E

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

exchange 1 and 11

E T S P L R A M O E X

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

r p S E L R A M O E X

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

exchange 1 and 10

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

exchange 1 and 10

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

A E E L M O P R S T X
1 2 3 4 5 6 7 8 9 10 11

78

Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

sink(3, 11)
(X)
R) W

starting point (arbitrary order)

sink(2, 11)
sink(5, 11) 0

(p) (L)

@% RS

sink(4, 11) sink(1, 11)

@
® ®

result (heap-ordered)

79

Heapsort: sortdown

Second pass.
e Remove the maximum, one at a time.
e Leave in array, instead of nulling out.

. exch(l, 3) @
while (N > 1) man,ac)//// i
{

exch(a, 1, N--);
sink(a, 1, N);
} h 2
1
exch(1l, 11) S?ﬁkgl, 13 @
sink(1, 10) E
(S)
R) W
® ® ® x
exch(1, 10) LA
sink(1, 9)
2 E 3 E
4 L 5 M 60 7 P

result (sorted)

Heapsort: Java implementation

public class Heap

{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int k = N/2; k >= 1; k--)
sink(a, k, N);
while (N > 1)
{
exch(a, 1, N);
sink(a, 1, --N);
}
¥ |
but make static (and pass arguments)
private static Aoid sink(Comparable[] a, int k, int N)
{ /* as before */ }
private static boolean less(Comparable[] a, int 1, int j)
{ /* as before */ }
private static voidhexch(Object[] a, int i, int j)
{ /* as before */
} but convert from 1-based

indexing to 0-base indexing

81

Heapsort: trace

ali]

N k O 1 2 3 4 5 6 7 8 91011
initial values S O R T EX A M P L E
11 5 L E E
11 4 T M P

11 3 X R A

11 2 T P L M O

11 1 X T S R A
heap-ordered X T S P L R A MO E E
10 1 T P S 0 L M E X
9 1 S P R E A T
8 1 R P E E A S

7 1 P O E M L R

6 1 O M E A L P

5 1 M L E A E O

4 1 L E E A M

3 1 E A E L

2 1 E A E

1 1 A E

sorted result A E E L M O P R S T X

Heapsort trace (array contents just after each sink)

82

Heapsort animation

50 random items

http:/ /www.sorting-algorithms.com/heap-sort

A

algorithm position
in order
not in order

83

Heapsort: mathematical analysis

Proposition. Heap construction uses <2 N compares and <N exchanges.

Proposition. Heapsort uses <2 Nlg N compares and exchanges.

algorithm can be improved to~ 1 NIg N
(but no such variant is known to be practical)

Significance. Deterministic in-place Nlog N sorting algorithm.
o Mergesort: no, linear extra Space. <«— in-place merge possible, not practical
° QUiCkSOI’t: no, randomized. «— deterministic N log N quicksort

possible, not practical

« Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
« Inner loop longer than quicksort’s.
« Makes poor use of cache.
« Not stable. N

can be improved using
advanced caching tricks

84

Sorting algorithms: summary

selection

insertion

merge

timsort

quick

3-way quick

heap

v

v v
v
v

v

v

v

v v

best average worst remarks

o N?

N

“NIgN

N

NlgN

N

3N

N

o N?

Y4 N?

NlgN

NlgN

2NInN
(expected)

2NInN
(expected)

2NlgN

NlgN

2 N?

2 N?

NlgN

NlgN

Y2 N?

Y2 N?

2Nlg
N

NlgN

N exchanges

use for small N
or partially ordered

N log N guarantee;
stable
improves mergesort
when preexisting order
N log N probabilistic guarantee;

fastest in practice
improves quicksort

when duplicate keys

N log N guarantee;
in-place

holy sorting grail

85

2.4 PRIORITY QUEUES

Algorithms

» event-driven simulation

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

o ®
° °
e o o
'Y L ®
e °®
°
o., ...
c * %
L e
° . :
.
®
® ® ® *
® ®
° o o
°
" ..o °

87

Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

Hard disc model.
« Moving particles interact via elastic collisions with each other and walls.

« Each particle is a disc with known position, velocity, mass, and radius.

« No other forces.

temperature, pressure, motion of individual
diffusion constant atoms and molecules

Significance. Relates macroscopic observables to microscopic dynamics.
« Maxwell-Boltzmann: distribution of speeds as a function of temperature.

e Einstein: explain Brownian motion of pollen grains.

88

Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

public class BouncingBalls

{

public static void main(String[] args)

{

int N = Integer.parselnt(args[0]);
Ball[] balls = new Ball[N];

for (int i = 0; i < N;

T++)

balls[i] = new Ball();

while(true)

{
StdDraw.clear();

for (int i = 0; i < N; i++)

{

balls[i].move(O.
balls[i].draw();

}
StdDraw.show(50) ;

5);

|

main simulation loop

% java BouncingBalls 100

° ® e
°
e
°) S)
o © o. «
°
e o o e ® o °
° . g
° . oo L4
. L XL ® .
0.‘. ..
®
L]) :. ¢
LN o‘
°
g Yo

89

Warmup: bouncing balls

public class Ball

{
private double rx, ry; // position
private double vx, vy; // velocity
private final double radius; // radius
public Ball(...)
{ /* initialize position and velocity */ } check for collision with walls
public void move(double dt) ¢//
{
1f ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx;
if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy;
rx = rx + vx*dt;
ry = ry + vy*dt;
}
public void draw()
{ StdDraw.filledCircle(rx, ry, radius); }
}

¥
}

Missing. Check for balls colliding with each other.
e Physics problems: when? what effect?
« CS problems: which object does the check? too many checks?

90

Time-driven simulation

e Discretize time in quanta of size dr.
* Update the position of each particle after every dr units of time,

and check for overlaps.
« If overlap, roll back the clock to the time of the collision, update the

velocities of the colliding particles, and continue the simulation.

e &

t t + dt t+ 2 dt t + At
(collision detected) (roll back clock)

91

Time-driven simulation

Main drawbacks.
« ~ N2/2 overlap checks per time quantum.
e Simulation is too slow if dr is very small.
* May miss collisions if dr is too large.
(if colliding particles fail to overlap when we are looking)

dt too small: excessive computation dt too large: may miss collisions

X _ 2

92

Event-driven simulation

Change state only when something interesting happens.
« Between collisions, particles move in straight-line trajectories.
« Focus only on times when collisions occur.
« Maintain PQ of collision events, prioritized by time.
e Delete min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,

when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s)
according to laws of elastic collisions.

prediction (attimet)

particles hit unless one passes \
Ve

intersection point before the other -
arrives ~

~
resolution (at time t + dt)

velocities of both particles
change after collision

93

Particle-wall collision

Collision prediction and resolution.
» Particle of radius s at position (rx, ry).
e Particle moving in unit box with velocity (vx, vy).
o Will it collide with a vertical wall? If so, when?

resolution (at time t + dft) —
velolc%'ty after collilsifm =(-vv)
position after collision = (1-s,1,+ v,dt)

prediction (at time t) ‘i

dt = time to hit wall - =
= distance/velocity (re>m,) - =T
=(1-s—r.)lv, .//r// —
y

Predicting and resolving a particle-wall collision

wall at
x=1

94

Particle-particle collision prediction

Collision prediction.
e Particle i: radius si, position (rx;, ry), velocity (vxi, vy)).
* Particle j: radius sj, position (rxj, ry)), velocity (vx;j, vy)).
* Will particles i and j collide? If so, when?

(vx;', vy
1
m;
\ (vx;, vy;)
___ .
rX;, ry;
(i 1) G
I
time =t time =t + At

,(ij'y V)’j')

95

Particle-particle collision prediction

Collision prediction.
e Particle i: radius si, position (rx;, ry), velocity (vxi, vy)).
* Particle j: radius sj, position (rxj, ry)), velocity (vx;j, vy)).
* Will particles i and j collide? If so, when?

(0 if Av-Ar >0,
At=1{0 o if d < 0,
Av-Ar + d ,
- Ao Ao otherwise

d = (Av-Ar)* — (Av-Av) (Ar-Ar — s%), s=s;+ s,

Av - Av=(Avx)* + (Avy)?
Ar - Ar = (Arx)* + (Ary)?
Av - Ar = (Avx)(Arx)+ (Avy)(Ary)

Av =(Avx, Avy) = (vx;—vx;, vy;—Vvy;)
Ar=(Arx, Ary) = (rx;—rx;, ry;—ry,)

Important note: This is physics, so we won’t be testing you on it!

96

Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

vx, = vx; + Jx/m,
Vyil = vy, + Jy/m Newton's second law
! “ e (momentum form)
VX; = VX, - Jx / m;
vy,.’ = v, - Jy/m,
J Arx J Ar 2m; m; (Av - Ar
Jr = . Jy = y) J = im; ()
S s s (m; +m;)

impulse due to normal force
(conservation of energy, conservation of momentum)

Important note: This is physics, so we won’t be testing you on it!

97

Particle data type skeleton

public class Particle

{

private
private
private
private
private

public

public
public

public
public
public

public
public
public

double rx, ry; // position
double vx, vy; // velocity
final double radius; // radius
final double mass; // mass
int count; // number of collisions
Particle(...) { ...}
void move(double dt) { ... }
void draw() { ...}
double timeToHit(Particle that)

1} | -
double timeToHitVerticalwall() { } __predict collision

. . . with particle or wall
double timeToHitHorizontalwall() { }

void bounceOff(Particle that) { } N
void bounceOffVerticalwWall() {} Wn;eiﬂgggﬂPaZﬂ
void bounceOffHorizontalwall() {} P

98

Collision system: event-driven simulation main loop

I N |t|a| | Zat | on. two pirticles on a collision course
« Fill PQ with all potential particle-wall collisions. -
« Fill PQ with all potential particle-particle collisions. ><

\ third particle interferes: no collision

“potential” since collision is invalidated
if some other collision intervenes ~
P

An invalidated event
Main loop.
* Delete the impending event from PQ (min priority = 7).
« If the event has been invalidated, ignore it.
« Advance all particles to time ¢, on a straight-line trajectory.
« Update the velocities of the colliding particle(s).
e Predict future particle-wall and particle-particle collisions involving the
colliding particle(s) and insert events onto PQ.

99

Event data type

Conventions.

« Neither particle nu11 = particle-particle collision.

e One particle nulT = particle-wall collision.

« Both particles nul1l = redraw event.

private static class Event implements Comparable<Event>

{

private final double time; // time of event
private final Particle a, b; // particles involved in event
private final int countA, countB; // collision counts of a and b

public Event(double t, Particle a, Particle b)
{ ...}

Create event

public i1nt compareTo(Event that) ordered by time

{ return this.time - that.time; }
public boolean isValid() valid if no intervening collisions
{ ...} (compare collision counts)

100

Particle collision simulation: example 1

% java CollisionSystem 100

o ®
°
° °
o o o
° ° . *
o ¢ ®
° °
1, .r .
L e
° . .f
.
®
® ® ® *
® ®
° o ©
°
" .Hn °

101

Particle collision simulation: example 2

% java CollisionSystem < billiards.txt

102

Particle collision simulation: example 3

% java CollisionSystem < brownian.txt
] y

[° ®
.. 2 o] ... @ ®
0. o a ® @ - 2} °
3 o o o &
6] °o® To ©
°. . ® = o
o o° ® 0% ° ® .
@ < 2] o o o @
o o @ o®
° e ©® o ©® =
8] 0. © ® o ©
°® ® * o0
o ® o "II' e 3 e o
® o ©
® % .: = . o °® @
o o o L2]
.0. a o : ¢ o ® & & e o
® o o * i ':
Is!
o % ° . ° 5 °.,°
o.: b) ° . .
o ® @
@ o ® o
) s ° o g
® 9 o * o © o o «:
o @ e e, ': - o®

103

Particle collision simulation: example 4

% java CollisionSystem < diffusion.txt

a

OCO‘CQ‘.‘“ 00000000000

104

