

2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- divide-and-conquer

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort. [this lecture]

Quicksort. [next lecture]

Make sure to register your iClicker on blackboard

You can miss up to 3 lectures with no penalty without any valid reason

· After that, email Maia with documentation of why you couldn't attend

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

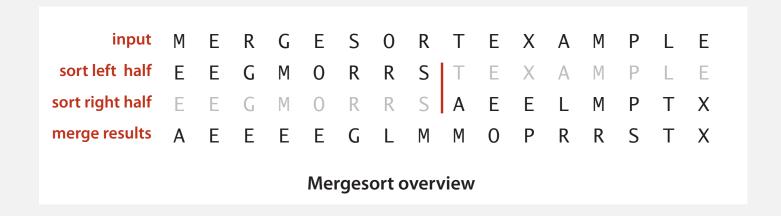
2.2 MERGESORT

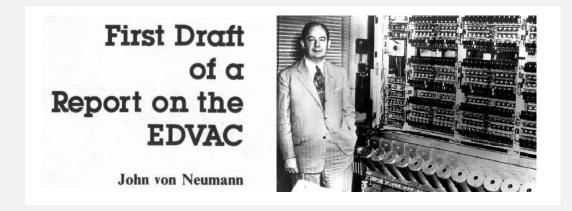
- mergesort
- bottom-up mergesort
- sorting complexity
- divide and conquer

Mergesort

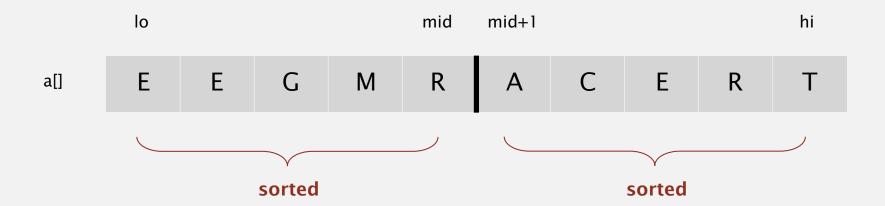
Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.





Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

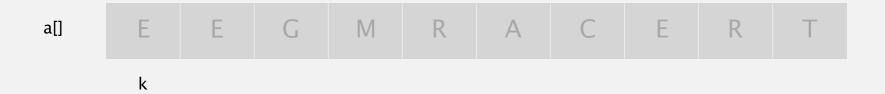


Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

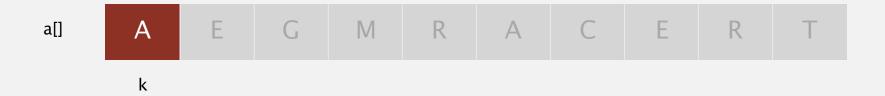
copy to auxiliary array

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

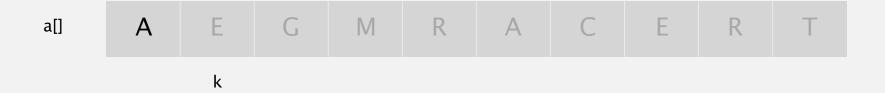
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



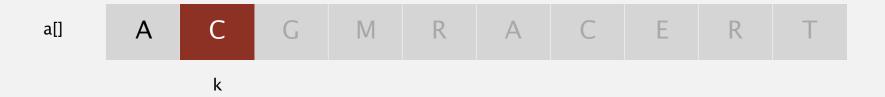
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

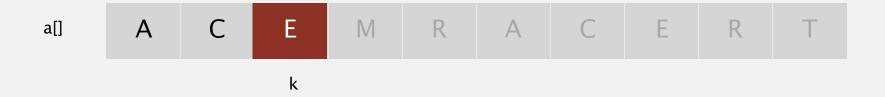


Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

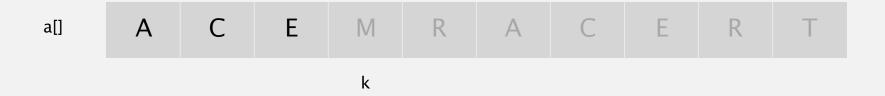


Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

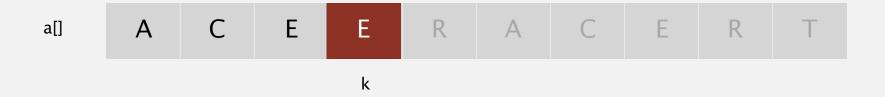
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

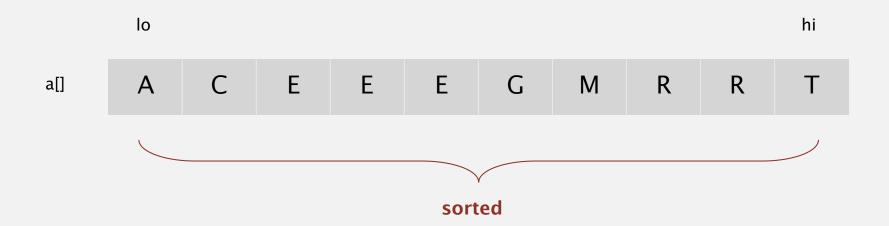
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

k

both subarrays exhausted, done

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Merging: Java implementation



Q. Why is aux passed as argument? Why is mid passed as argument?

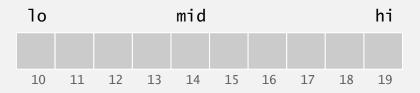
Mergesort quiz 1

How many calls does merge() make to to less() to merge two sorted subarrays of size N/2 each into a sorted array of size N.

- **A.** $\sim \frac{1}{4} N$ to $\sim \frac{1}{2} N$
- $\mathbf{B.} \sim \frac{1}{2} N$
- C. $\sim \frac{1}{2} N$ to $\sim N$
- $\sim N$
- **E.** Hey, this just counts for class participation points, right?

Mergesort: Java implementation

```
public class Merge
   private static void merge(...)
   { /* as before */ }
   private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
      if (hi <= lo) return;
      int mid = lo + (hi - lo) / 2;
      sort(a, aux, lo, mid);
      sort(a, aux, mid+1, hi);
      merge(a, aux, lo, mid, hi);
   }
   public static void sort(Comparable[] a)
      Comparable[] aux = new Comparable[a.length];
      sort(a, aux, 0, a.length - 1);
}
```



Mergesort: trace

```
a[]
                             hi
                                               5 6 7 8 9 10 11 12 13 14 15
                                   Ε
                                               S
                                                     R T
                                                  0
     merge(a, aux,
                    2,
     merge(a, aux,
                          3)
   merge(a, aux, 0, 1,
     merge(a, aux,
                    4,
                        4,
                            5)
                            7)
     merge(a, aux, 6,
   merge(a, aux, 4,
                      5.
                          7)
 merge(a, aux, 0, 3,
                        7)
                        8.
     merge(a, aux, 8,
                            9)
     merge(a, aux, 10, 10, 11)
   merge(a, aux, 8, 9, 11)
     merge(a, aux, 12, 12, 13)
     merge(a, aux, 14, 14, 15)
   merge(a, aux, 12, 13, 15)
 merge(a, aux, 8, 11, 15)
                                                     M
                                                        M
merge(a, aux, 0, 7, 15)
```

result after recursive call

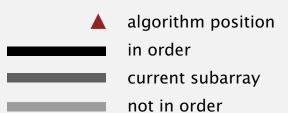
Mergesort quiz 2

Which of the following subarray lengths will occur when running mergesort on an array of length 12?

- **A.** { 1, 2, 3, 4, 6, 8, 12 }
- **B.** { 1, 2, 3, 6, 12 }
- **C.** { 1, 2, 4, 8, 12 }
- **D.** { 1, 3, 6, 9, 12 }
- **E.** *I don't know.*

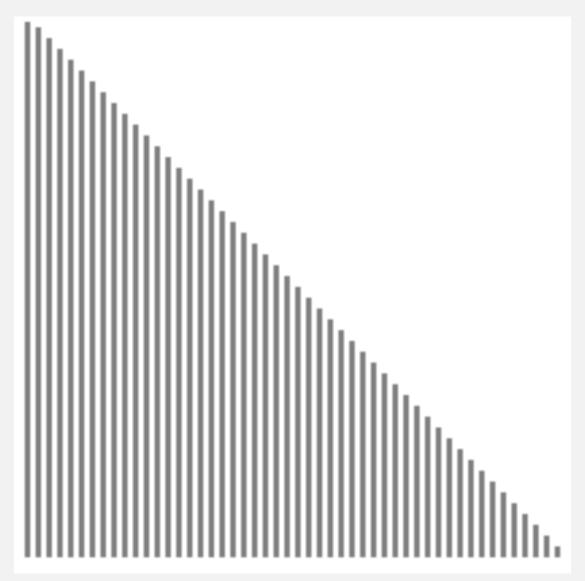
Mergesort: animation

50 random items



Mergesort: animation

50 reverse-sorted items



algorithm position
in order
current subarray
not in order

http://www.sorting-algorithms.com/merge-sort

Mergesort analysis: number of compares

Proposition. Mergesort uses $\leq N \lg N$ compares to sort an array of length N.

Pf sketch. The maximum number of compares C(N) to mergesort an array of length N satisfies the recurrence:

We solve this simpler recurrence, and assume N is a power of 2:

$$D(N) = 2 D(N/2) + N$$
, for $N > 1$, with $D(1) = 0$.

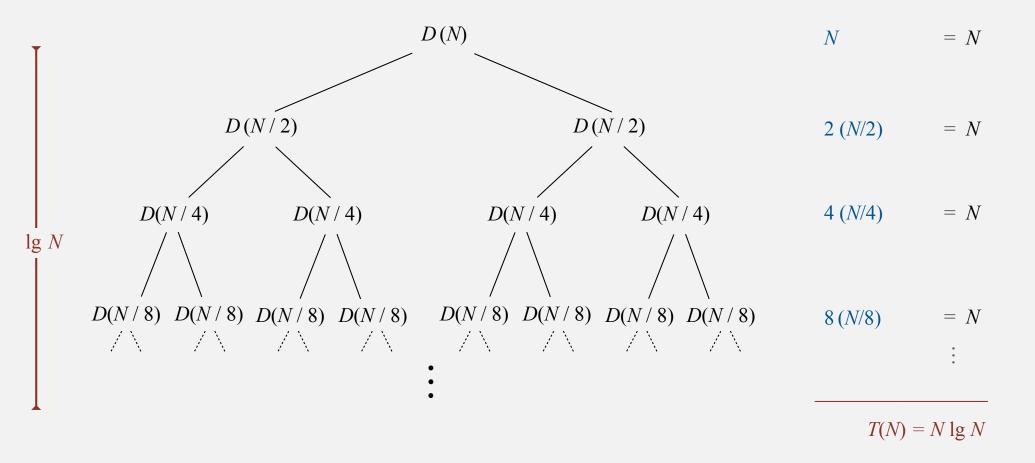
result holds for all N (analysis cleaner in this case)

Q. Can you show that $C(N) \leq C(N+1)$?

Divide-and-conquer recurrence

Proposition. If D(N) satisfies D(N) = 2D(N/2) + N for N > 1, with D(1) = 0, then $D(N) = N \lg N$.

Pf by picture. [assuming N is a power of 2]



Mergesort analysis: number of array accesses

Proposition. Mergesort uses $\leq 6 N \lg N$ array accesses to sort an array of length N.

Pf sketch. The max number of array accesses A(N) satisfies the recurrence:

$$A(N) \le A([N/2]) + A([N/2]) + 6N$$
 for $N > 1$, with $A(1) = 0$.

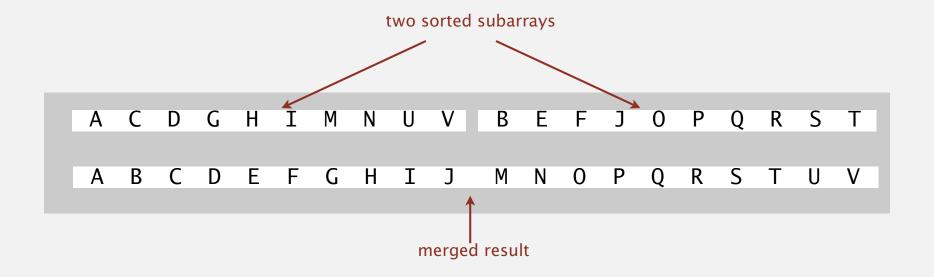
Key point. Any algorithm with the following structure takes $N \log N$ time:

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to *N*.

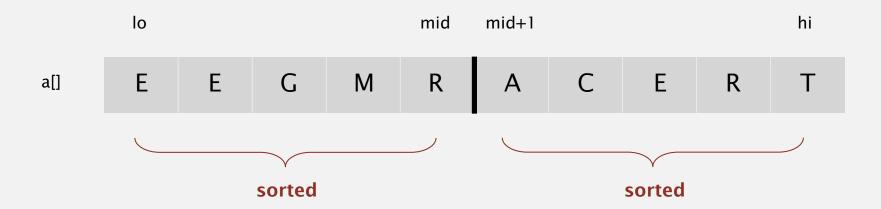
Pf. The array aux[] needs to be of length N for the last merge.



Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory. Ex. Insertion sort, selection sort, shellsort.

Challenge 1 (not hard). Use aux[] array of length $\sim \frac{1}{2} N$ instead of N. Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



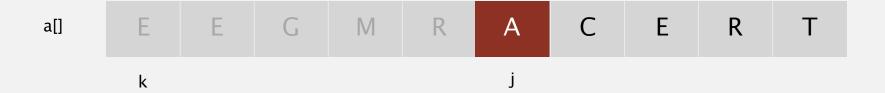
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

copy to auxiliary array (of half the size)

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

aux[] E E G M R

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

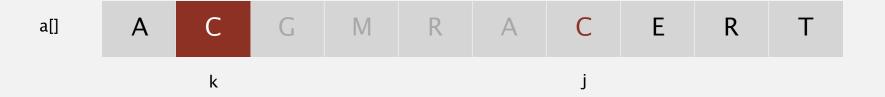


Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

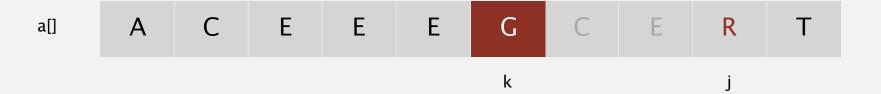
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

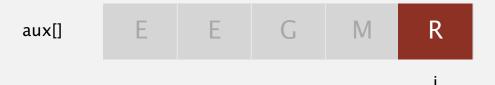
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



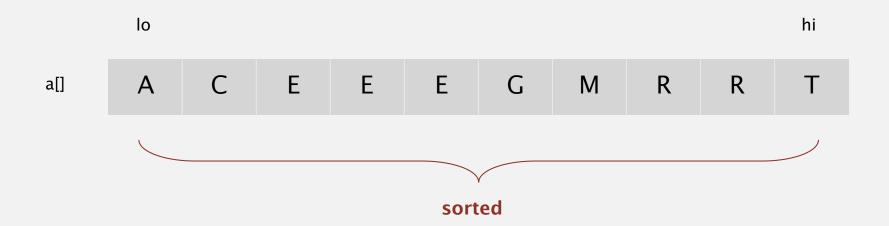
Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

if auxiliary subarray is exhausted, done!

ı

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].



Mergesort quiz 3

Is our implementation of mergesort stable?

- A. Yes.
- B. No, but it can be modified to be stable.
- C. No, mergesort is inherently unstable.
- **D.** *I don't remember what stability means.*
- **E.** *I don't know.*

a sorting algorithm is stable if it preserves the relative order of equal keys

not stable

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
   private static void merge(...)
   { /* as before */ }
   private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
      if (hi <= lo) return;
      int mid = 10 + (hi - 10) / 2;
      sort(a, aux, lo, mid);
      sort(a, aux, mid+1, hi);
      merge(a, aux, lo, mid, hi);
   }
   public static void sort(Comparable[] a)
   { /* as before */ }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(...)
{
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];

    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
}
}
```

Pf. Takes from left subarray if equal keys.

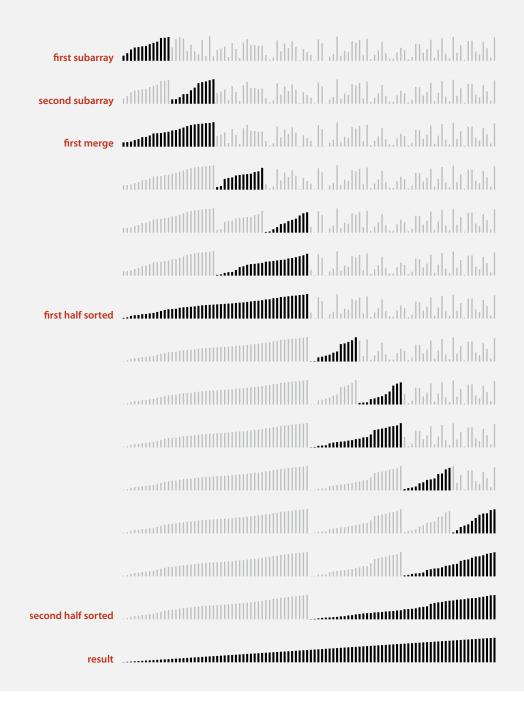
Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
 - Not captured in cost model (number of compares)
- Cutoff to insertion sort for ≈ 10 items.

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int mid = lo + (hi - lo) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}</pre>
```

Mergesort with cutoff to insertion sort: visualization



Mergesort: practical improvements

Stop if already sorted.

- Is largest item in first half ≤ smallest item in second half?
- Helps for partially-ordered arrays.

```
A B C D E F G H I J M N O P Q R S T U V

A B C D E F G H I J M N O P Q R S T U V
```

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
   if (hi <= lo) return;
   int mid = lo + (hi - lo) / 2;
   sort (a, aux, lo, mid);
   sort (a, aux, mid+1, hi);
   if (!less(a[mid+1], a[mid])) return;
   merge(a, aux, lo, mid, hi);
}</pre>
```

Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
  int i = lo, j = mid+1;
  for (int k = 10; k \le hi; k++)
     if (i > mid) aux[k] = a[j++];
     else if (j > hi)  aux[k] = a[i++];
                                                        — merge from a[] to aux[]
     else if (less(a[j], a[i])) aux[k] = a[j++];
     else
                                aux[k] = a[i++]:
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
  if (hi <= lo) return;
  int mid = lo + (hi - lo) / 2;
                                             assumes aux[] is initialize to a[] once,
  sort (aux, a, lo, mid);
                                                     before recursive calls
  sort (aux, a, mid+1, hi);
  merge(a, aux, lo, mid, hi);
```

Java 6 system sort

Basic algorithm for sorting objects = mergesort.

- Cutoff to insertion sort = 7.
- Stop-if-already-sorted test.
- Eliminate-the-copy-to-the-auxiliary-array trick.

Arrays.sort(a)

http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/tip/src/share/classes/java/util/Arrays.java

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- divide and conquer

Bottom-up mergesort

Basic plan.

- Pass through array, merging subarrays of size 1.
- Repeat for subarrays of size 2, 4, 8,

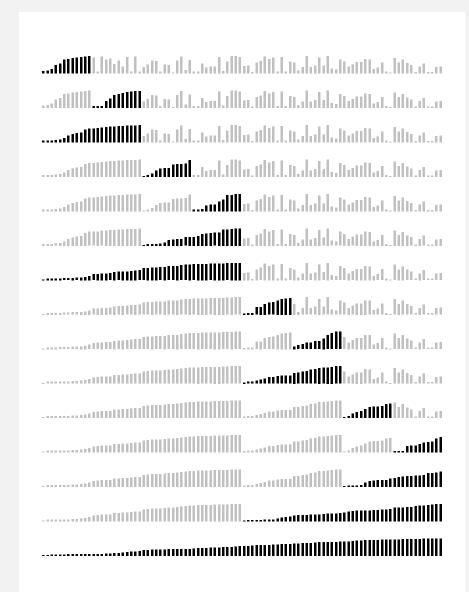
```
a[i]
                                           5 6 7 8
                                                     9 10 11 12 13 14 15
                                             0
     sz = 1
     merge(a, aux, 0, 0, 1)
     merge(a, aux, 2, 2,
                         3) E
                                M
                         5) E
     merge(a, aux, 4, 4,
     merge(a, aux, 6, 6,
                        7)
     merge(a, aux, 8, 8,
                         9) E
     merge(a, aux, 10, 10, 11)
     merge(a, aux, 12, 12, 13)
     merge(a, aux, 14, 14, 15)
   sz = 2
   merge(a, aux, 0, 1,
   merge(a, aux, 4,
                    5.
                       7)
   merge(a, aux, 8, 9, 11)
   merge(a, aux, 12, 13, 15)
                                                S
 sz = 4
 merge(a, aux, 0, 3, 7)
                                             R S
                                           R
                                             R S
                                                  A E
 merge(a, aux, 8, 11, 15)
sz = 8
                                       E G L M M O P R R S T X
merge(a, aux, 0, 7, 15)
                             AEEE
```

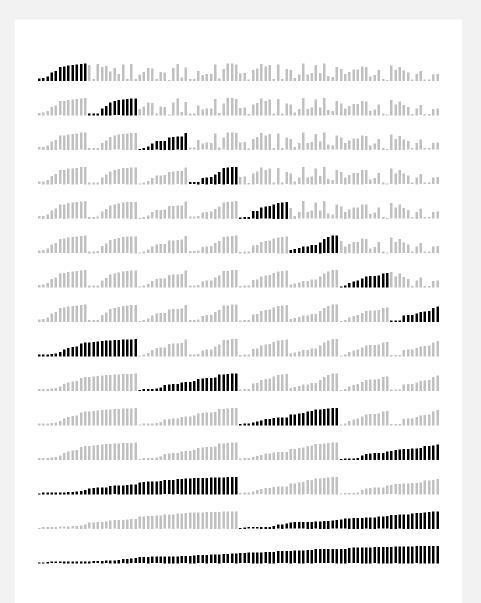
Bottom-up mergesort: Java implementation

```
public class MergeBU
   private static void merge(...)
   { /* as before */ }
   public static void sort(Comparable[] a)
      int N = a.length;
      Comparable[] aux = new Comparable[N];
      for (int sz = 1; sz < N; sz = sz+sz)
         for (int lo = 0; lo < N-sz; lo += sz+sz)
            merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}
```

Bottom line. Simple and non-recursive version of mergesort.

Mergesort: visualizations





Mergesort quiz 4

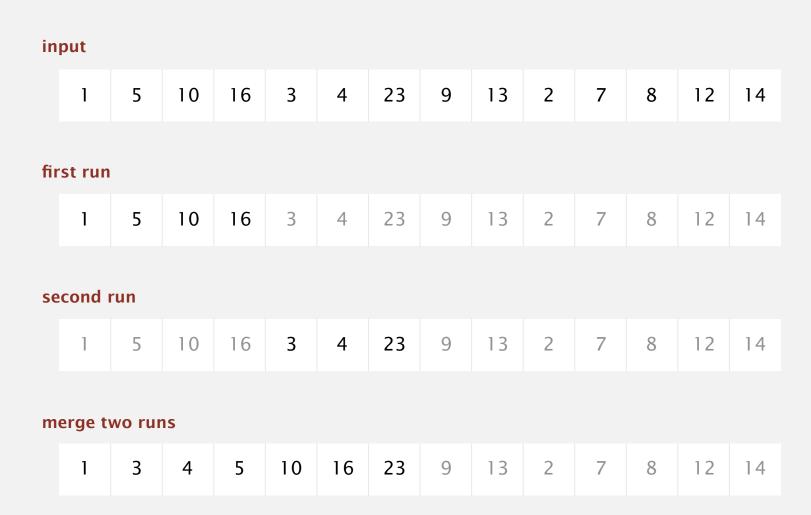
Which is faster in practice: top-down mergesort or bottom-up mergesort? You may assume N is a power of 2.

- A. Top-down (recursive) mergesort. ← Maybe! Locality
- B. Bottom-up (nonrecursive) mergesort. ← Maybe! Overhead
- C. About the same.
- D. It depends.
- **E.** *I don't know.*

Overhead can be minimized with well-chosen cutoff to insertion sort. Locality is inherent.

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally-occurring runs.



Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

Timsort

- Natural mergesort.
- Use binary insertion sort to make initial runs (if needed).
- A few more clever optimizations.

Tim Peters

Consequence. Linear time on many arrays with pre-existing order. Now widely used. Python, Java 7, GNU Octave, Android,

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	V		½ N ²	½ N ²	½ N ²	N exchanges
insertion	V	V	N	½ N ²	½ N ²	use for small N or partially ordered
shell	V		$N \log_3 N$?	$c N^{3/2}$	tight code; subquadratic
merge		V	½ N lg N	N lg N	$N \lg N$	$N \log N$ guarantee; stable
timsort		V	N	N lg N	$N \lg N$	improves mergesort when preexisting order
?	V	V	N	N lg N	N lg N	holy sorting grail

Algorithms

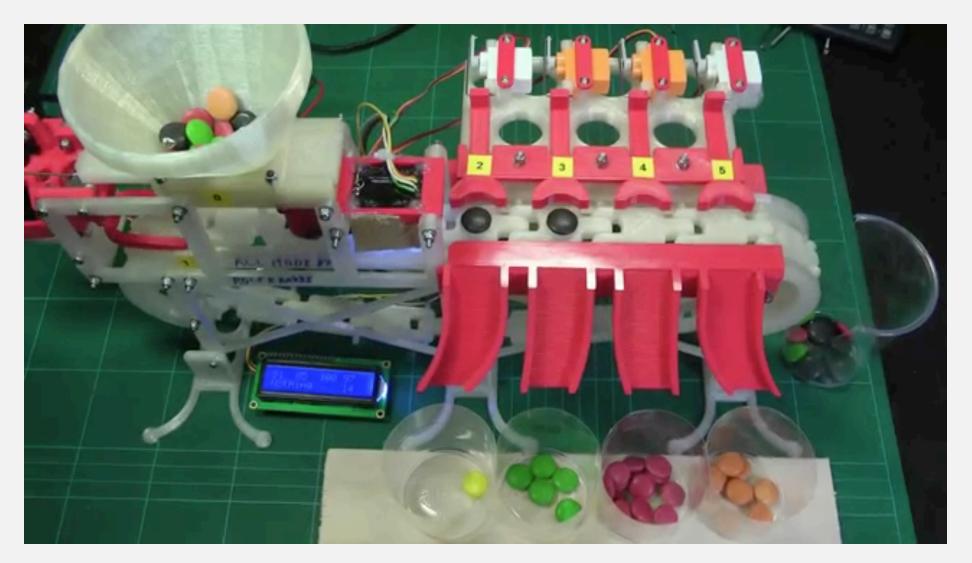
ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- divide-and-conquer

Commercial break



https://www.youtube.com/watch?v=tSEHDBSynVo

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Model of computation. Allowable operations.

Cost model. Operation counts.

Upper bound. Cost guarantee provided by some algorithm for X.

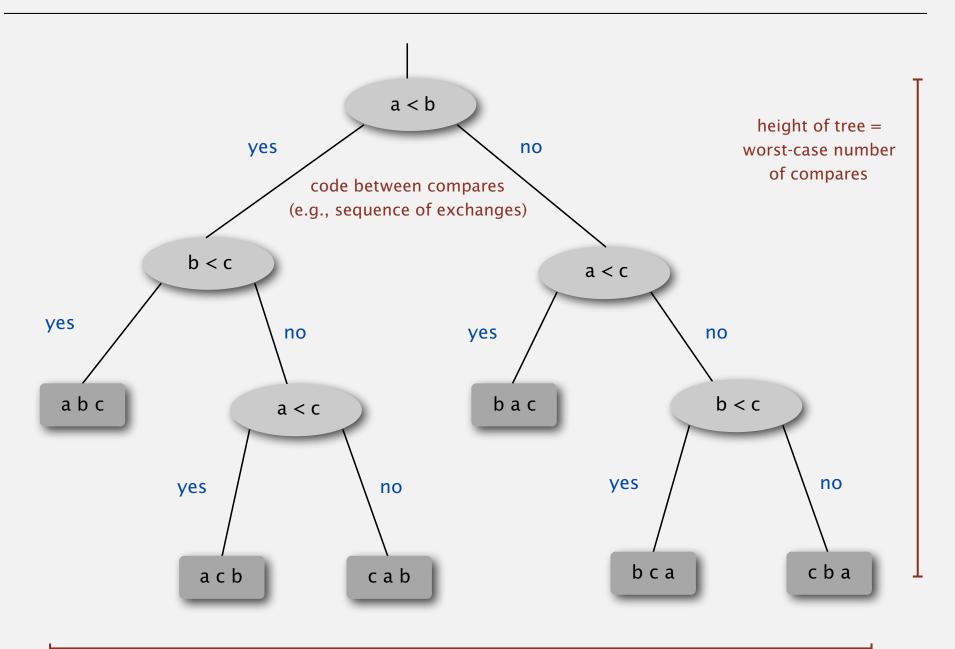
Lower bound. Proven limit on cost guarantee of all algorithms for *X*.

Optimal algorithm. Algorithm with best possible cost guarantee for *X*.

lower bound ~ upper bound

model of computation	decision tree	can access information only through compares (e.g., Java Comparable framework)	
cost model	# compares		
upper bound	~ N lg N from mergesort		
lower bound	?		
optimal algorithm	?		

Decision tree (for 3 distinct keys a, b, and c)

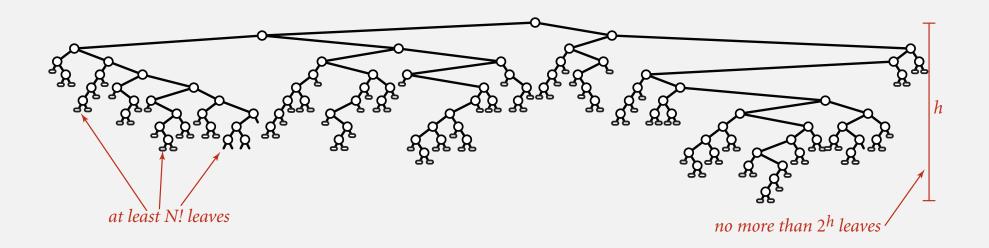


Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $lg(N!) \sim N lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_1 through a_N .
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^h leaves.
- N! different orderings \Rightarrow at least N! leaves.

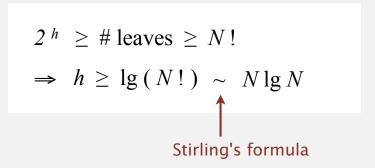


Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg(N!) \sim N \lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_1 through a_N .
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^h leaves.
- N! different orderings \Rightarrow at least N! leaves.



Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for *X*.

Lower bound. Proven limit on cost guarantee of all algorithms for *X*.

Optimal algorithm. Algorithm with best possible cost guarantee for *X*.

model of computation	decision tree
cost model	# compares
upper bound	$\sim N \lg N$
lower bound	$\sim N \lg N$
optimal algorithm	mergesort

complexity of sorting

First goal of algorithm design: optimal algorithms.

Complexity results in context

Compares? Mergesort is optimal with respect to number compares.

Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.

- Ex. Design sorting algorithm that guarantees $\sim \frac{1}{2} N \lg N$ compares?
- Ex. Design sorting algorithm that is both time- and space-optimal?

Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

The initial order of the input.

Ex: insertion sort requires only a linear number of compares on partially-sorted arrays.

• The distribution of key values.

Ex: 3-way quicksort requires only a linear number of compares on arrays with a constant number of distinct keys. [stay tuned]

The representation of the keys.

Ex: radix sorts require no key compares — they access the data via character/digit compares.

- Q. How would you sort an array of Students by birthday?
- Q. How would you sort an array of Students by last name (of \leq 12 chars)?

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for
Tilde	leading term	$\sim \frac{1}{2} N^2$	$\frac{1}{2} N^2$ $\frac{1}{2} N^2 + 22 N \log N + 3 N$
Big Theta	order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3 N$
Big O	upper bound	$O(N^2)$	$10 N^{2}$ $100 N$ $22 N \log N + 3 N$
Big Omega	lower bound	$\Omega(N^2)$	$\frac{1/2}{N^{5}}$ N^{5} $N^{3} + 22 N \log N + 3 N$

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 MERGESORT

- mergesort
- bottom-up mergesort
- sorting complexity
- divide-and-conquer

Shuffle a linked list

Problem. Given a singly-linked list, rearrange its nodes uniformly at random.

Assumption. Access to a perfect random number generator.

all N! permutations equally likely

Version 1. Linear time, linear extra space.

Version 2. Linearithmic time, logarithmic or constant extra space.

