COS 226, SPRING 2016

ALGORITHMS
AND
DATA STRUCTURES

ARVIND NARAYANAN

UNIVERSITY

http:/ /www.princeton.edu/~co0s226

COS 226 course overview

What is COS 2267
e Intermediate-level survey course.
« Programming and problem solving, with applications.
e Algorithm: method for solving a problem.

e Data structure: method to store information.

data structures and algorithms

data types stack, queue, bag, union-find, priority queue
sorting quicksort, mergesort, heapsort, radix sorts
searching BST, red-black BST, hash table
graphs BFS, DFS, Prim, Kruskal, Dijkstra
strings KMP, regular expressions, tries, data compression

advanced B-tree, kd-tree, suffix array, maxflow

Why study algorithms?

‘Tnevpsavl

ROBO RECRUITING

Can an Algorithm Hire Better Than a Human?

——— e

Algorithm That Tells the B

0ss Who Might Qui
Wal-Mart, Credit Suisse Crunch Data to See Which Workers Arn 1 = m%elalve 9Stayt
| — “

. if()]c o N
algorithms

) to computer

Prisons turn

e |

(
’
or arole : nve? eHarmony's
deciding who to P&) Can maths find you L e |
By Jacob K alkes on Osesi® © Subscribe m i .ONA“' YTESTS
DONT MISS STORIES FOLLOW THE VERGE mm— lOVe a lgorlth m Th's A’QOI‘ ithm Kno Y
: . . n
yu love? The dating : Fnends DO YOur FaCEbOQk
claim to have _ ‘
 * | The Algorithm Economy Heads To Amazon
U= Danny Crichton (@DannyCrichton
TFfF SATURDAY ESSAY

= DD NEEECE {
Bitcoin and the Digit

4 Currency RevolutioniL

For all bitcoin’s growing pains, it represe
money and global finance.

TECHNOLOGY
1832

At UPS, the Algorithm Is the Driver

Turn right, turn left, turn right: inside Orion, the 10-year effort to Squeeze every penny ;%
I

By STEVEN ROSENBUSH and LAURA STEVENS
Feb. 16, 2015 8:28 p.m.ET

® 87 COMMENTS

Why study algorithms?

They may unlock the secrets of life and of the universe.

“ Computer models mirroring real life have become crucial for most

advances made in chemistry today.... Today the computer is just as

»

important a tool for chemists as the test tube.
— Royal Swedish Academy of Sciences
(Nobel Prize in Chemistry 201 3)

Martin Karplus, Michael Levitt, and Arieh Warshel

Why study algorithms?

To solve problems that could not otherwise be addressed.

http://www.youtube.com/watch?v=ua7YIN4elL_w

Why study algorithms?

Old roots, new opportunities.
e Study of algorithms dates at least to Euclid.
 Named after Muhammad ibn Misa al-Khwarizmr.
« Formalized by Church and Turing in 1930s.
« Some important algorithms were discovered

by undergraduates in a course like this!

825
920s
930s
940s
950s
960s
970s
980s
990s
2000s

— = = = = = p— p—

300 BCE

Why study algorithms?

For intellectual stimulation.

THE DY OF ALGORITHMS

“ For me, great algorithms are the poetry of computation. Just

like verse, they can be terse, allusive, dense, and even mysterious.

But once unlocked, they cast a brilliant new light on some

»

aspect of computing. — Francis Sullivan

DEAR MYSTERY ALGORITHM THAT HOGGED GLOBAL s * e ¢

FINANCIAL TRADING LAST WEEK: WHAT DO YOU WANT? , (a) * €) & (e,

ON FRIDAY, A SINGLE MYSTERIOUS PROGRAM WAS RESPONSIBLE FOR 4 PERCENT | g‘r g , u‘. m .

OF ALL STOCK QUOTE TRAFFIC AND SUCKED UP 10 PERCENT OF THE NASDAQ'S) i 1] -b, inp “
TRADING BANDWIDTH. THEN IT DISAPPEARED. —— - -s\); B - m(a, * ,,-.'"W"a I T
By Clay Dillow Posted October 10, 2012 “.. void e); e » e -

; -1<b &k a.spli
L <€ b && a.splice(b, 1); retur-n‘:;u). ~

8.replace(RegExp(",", "g"), " %)

b B) { for (varc =9, d = 9;d ¢
&% c++; } return ¢; } function
-3, d = 0;d < a.lengthjd+) {&s
ak; } } return ¢; } functios
” b = 1; “_" ===

Not Even the People Who
Write Algorithms Really
Know How They Work

The web's information filters are making assumptions about you based
on details that you might not even notice yourself.

Why study algorithms?

For fun and profit. Clsco SYSTEMS
(z
Google -

Nlniendo M. JANE
STREET

SSSS&\\\\%

<.II

,[.}l

SECURITY

DEShaw&Co ORACLE ((\

VYaEHoO! amazon Micresoft » : x A R

Morgan Stanley

Why study algorithms?

« Their impact is broad and far-reaching.

« They may unlock the secrets of life and of the universe.

« To solve problems that could not otherwise be addressed.
« Old roots, new opportunities.

« To become a proficient programmer.

o For intellectual stimulation.

Why study anything else?

o For fun and profit.

Resources (web)

Google cos226 n -

All Shopping News Videos Maps More ¥ Search tools

About 34,700,000 results (0.32 seconds)

cos(226 radians) =

0.98111135433

Rad x! () % AC

Inv sin In 7 8 9 =

n cos log 4 5 6 X

e tan v 1 2 3 -

as EXP x 0 . = +
More info

http://www.princeton.edu/~co0s226

Resources (web)

Google 226 cos

All Maps Images Shopping News More v Search tools

About 34,700,000 results (0.29 seconds)

COS 226, Spring 2016: Course Information

www.princeton.edu/~c0s226/ ¥ Princeton University
Princeton COS 226: Data Structures and Algorithms.

Lectures Assignments

Once the lecture moves above the Below are links to the programming
"Lectures below have not yet ... assignments. For ...

Exams Exercises

EXAMS. Midterm exam. Here is some There is one set of exercises
information about the ... associated with each lecture (so ...

More results from princeton.edu »

http://www.princeton.edu/~cos226

Precepts

Discussion, problem-solving, background for assignments.

|| tme | roow | pemsoN | ofmcE | Houms |
MW

LO1 McCosh Arvind Sherrerd Wed
11-12:20pm 10 Narayan 308 2-4pm
L02 MW Jadwin Andy 221 Nassau St. Mon
11-12:20pm A10 Guna Room 103 1:00-3:00pm
PO1 Th Friend Maia CSs Tue
9-9:50am 108 Ginsburg t Room 205 12:30-2:30pm
P02 Th Friend Shivam Sherrerd 3rd Floor Tue
10-10:50am 108 Agarwal Common Area 5-7pm
PO2A Th Friend Marc CS Mon
10-10:50am 109 Leef 001B 6-8pm
PO3 Th Friend Maia CS Tue
11-11:50am 108 Ginsburg t Room 205 12:30-2:30pm
PO3A Th Friend Ming-Yee TBA Mon
11-11:50am 109 Tsang TBA 8-10pm
PO4 Th Friend Miles Sherrerd 3rd Floor Mon
12:30pm-1:20pm 108 Caristen Common Area 4-6pm
PO5 Th Friend Sergiy CS Sun
1:30pm-2:20pm 112 Popowych 241 (front) 4:30-6:30pm
POG F Friend Andy 221 Nassau St. Mon
10-10:50am 108 Guna t Room 103 1:00-3:00pm
PO7 F Friend Andy 221 Nassau St. Mon
11-11:50am 108 Guna t Room 103 1:00-3:00pm
PO7A F Friend Harry CSs Tues
11-11:50am 109 Kalodner 241 (front) 3-5pm
P99 M 221 Nassau St. Andy 221 Nassau St. Mon
11:00-11:50pm Conference room Guna Room 103 1:00-3:00pm

+ co-lead preceptors

12

Coursework and grading

Programming assignments. 45%

« Due at 11pm on Tuesdays via electronic submission.

« Collaboration/lateness policies: see web.

Exercises. 10%
« Due at 11pm on Sundays via Blackboard.
« Collaboration/lateness policies: see web.

Exams. 15% + 25%

« Midterm (in class on Wednesday, March 11).

« Final (to be scheduled by Registrar).

Participation. 5%

e Attend and participate in precept/lecture.
« Answer questions on Piazza.

Participation

Programming
Assignments

Midterm
Exam

13

bclicker

Required device for lecture.
 Any hardware version of irclicker.
« Use default frequency AA. o ?Z.en::.::a:e:l;[zzzue
« Available at Labyrinth Books ($25).
* You must register your irclicker in Blackboard.
(sorry, insufficient WiFi in this room to support irclicker GO)

We’ll start using them on Wednesday.

14

Electronic devices: Permitted, but only to enhance lecture.

no no no

Resources (textbook)

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,
Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

4th edition (2011)

Available in hardcover and Kindle.
e Online: Amazon ($60 hardcover, $50 Kindle, $20 rent), ...
e Brick-and-mortar: Labyrinth Books (122 Nassau St.).
« On reserve: Engineering library.

16

Resources (web)

Course content.
e Course info.
Lecture slides.

e Flipped lectures.

« Programming assignments.
« Exercises.

« Exam archive.

Booksite.
o Brief summary of content.
« Download code from book.
« APIs and Javadoc.

Algorithms

ALGORITHMS, 4TH EDITION
1. Fundamentals

2. Sorting

3. Searching

4. Graphs

5. Strings

6. Context

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin
Wayne [Amazon - Addison-Wesley] surveys the most important algorithms and
data structures in use today. The textbook is organized into six chapters:

e Chapter 1: Fundamentals introduces a scientific and engineering basis for
comparing algorithms and making predictions. It also includes our
programming model.

e Chapter 2: Sorting considers several classic sorting algorithms, including
insertion sort, mergesort, and quicksort. It also includes a binary heap
implementation of a priority queue.

e Chapter 3: Searching describes several classic symbol table
implementations, including binary search trees, red-black trees, and hash
tables.

http://algs4.cs.princeton.edu

17

Resources (people)

Piazza discussion forum.
 Low latency, low bandwidth.
« Mark solution-revealing questions
as private.

Office hours.
« High bandwidth, high latency.
o See web for schedule.

Computing laboratory.
« Undergrad lab TAs.
e For help with debugging.
« See web for schedule.

http://piazza.com/princeton/spring2015/cos226

http:/ /www.princeton.edu/~co0s226

http:/ /labta.cs.princeton.edu

18

What's ahead?

Wednesday. Attend traditional/flipped lecture.
Thursday/Friday. Attend precept (everyone).

FORi=1toN
Sunday: two sets of exercises due.
Monday: traditional/flipped lecture.
Tuesday: programming assignment due.
Wednesday: traditional/flipped lecture.
Thursday/Friday: precept.

protip: start early

| AHEAN

19

Q+A

Not registered? Go to any precept this week.
Change precept? Use TigerHub.

All possible precepts closed? See Colleen Kenny-McGinley in CS 210.

Haven't taken COS 126? See COS placement officer.
Placed out of COS 1267 Review Sections 1.1-1.2 of Algorithms 4/e.

L

Even the genius asks

&Ill('((l(iﬂ\f

20

Algorithms

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

1.5 UNION-FIND

» dynamic-connectivity problem
» quick find

» quick union

» Improvements

» applications

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

model the
problem
design an tryaga,-n
algorithm \
understand
why not
. /

correct?
efficient?

yes

!

solve the
problem

22

1.5 UNION-FIND

» dynamic-connectivity problem

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamic-connectivity problem

Given a set of N elements, support two operations:
« Connection command: directly connect two elements with an edge.
« Connection query: is there a path connecting two elements?

are 8 and 9 connected? v e e e e e

are 5 and 7 connected? X
connect 5 and 0
connect 7 and 2
connect 6 and 1
connect I and 0

are 5 and 7 connected? v

24

A larger connectivity example

Q. Is there a path connecting elements p and ¢ ?

\ finding the path explicitly is a harder problem

(second half of the course)

/

11111 I) P | HITHlIHiLJT. |8
S R, e
Rttt ettt ety
f el L ﬂH&HILhTTmIHIHL
== r; : T i rIJH :
st etaritiitetint WHHI T Imﬁ
! _ L IT 11l) 1 g L o]
e e e e
SR e, s T B
— o o L ! Eiss 11)
) HHIH i hﬁ I WIV
S e
MW ﬁH 1] | T 10 IHH I
— _ shad o T R
L ﬂm.H Hﬂux THH 1 Iﬂm :) HHH
_ _ . I 11
TH ﬂH H?TH m“) Im o
| gigfes silggseast Sotitijcd
11 # L] I% L_IHI Jr]
g ! 1 Lr =t
IH%PT.I 11 TIH FH: iHIH 1
IIL HIIHTHH.T.HL wth T.IH 2) .
Hio 44 1 P 1 I
mﬁnlmrﬂﬁ* _Lm I zmw Hh
R eacststinteiasiis ol spnteciiiisendotiatialt:
o

A. Yes.

25

Modeling the elements

Applications involve manipulating elements of all types.
e Pixels in a digital photo.
« Computers in a network.
e Friends in a social network.
o Transistors in a computer chip.
« Elements in a mathematical set.
« Variable names in a Fortran program.

e Metallic sites in a composite system.

When programming, convenient to name elements O ton — 1.
« Use integers as array index.
o Suppress details not relevant to union-find.

Later in the course:
how to translate from names to integers

Algorithms in nature

Slime mold in a maze, with food placed at the start and end points

27

Modeling the connections

Connected component. Maximal set of elements that are mutually connected.

© 0 @ (3)

{0r{1,4,5}r{2, 3,6,7}

3 disjoint sets

(connected components)

28

Two core operations on disjoint sets

Union. Replace set p and ¢ with their union.

Find. In which set is element p?

union(2, 5) find(5) == find(6) v

{ O } { 1’ 4’ 5 } { 2’ 3’ 6! 7 } { O } { 1’ 2’ 3’ 47 5’ 6’ 7 }

3 disjoint sets

2 disjoint sets

29

Modeling the dynamic-connectivity problem using union-find

Q. How to model the dynamic-connectivity problem using union-find?

A. Maintain disjoint sets that correspond to connected components.

 Connect elements p and g.

* Are elements p and ¢ connected?

union(2, 5)

{or{1,4,5%}r4{2, 3,6, 7}

3 disjoint sets

connect 2 and 5

© (D O (3)

3 connected components

find(5) == find(6) v

{ O } { 1’ 2’ 3’ 47 5’ 6’ 7 }

2 disjoint sets

are 5 and 6 connected?

© D (2)

2 connected components

30

Union-find data type (API)

public class UF

UF(int n)

void union(int p, int q)

int find(int p)

Relatively straightforward expression

initialize union—find data structure

with n singleton sets (O ton — 1)

merge sets containing

elements p and g

identifier for set containing

element p (Oton—1)

of problem statement in Java

31

Up next: two simple union-find algorithms

Difficulty:
« Number of elements n can be huge.
« Number of operations m can be huge.
« Union and find operations can be intermixed.

Data could come from large social network with billions of nodes

32

Dynamic-connectivity client

e Read in number of elements n from standard input.

 Repeat:

— read in pair of integers from standard input

— if they are not yet connected, connect them and print pair

public static void main(String[] args)

{

int n = StdIn.readInt();
UF uf = new UF(n);
while (!StdIn.isEmpty())
{
int p = StdIn.readInt();
int g = StdIn.readInt();
if (uf.find(p) != uf.find(q))
{
uf.union(p, q);
StdOut.printin(p + " " + q);

% more tinyUF.txt
10

N ©O O WA
= b~ U1 00 W

50
7 2 already connected
6 1 (don't print these)

33

1.5 UNION-FIND

» quick find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure.
e Integer array id[] of length n.
e Interpretation: id[p] identifies the set containing element p.

idilJ] 0 1 1 8 8 0 O 1 8 8

id[1] =0 id[1] =1 id[1] =8

SO AN AN

10,5 6} {1, 2,7} {3, 4,38,9}

3 disjoint sets

Q. How to implement find(p)?
A. Easy, just return id[p].

35

Quick-find [eager approach]

Data structure.
e Integer array id[] of length n.
e Interpretation: id[p] identifies the set containing element p.

union(6, 1)

1'd[]nl 18 8““] 8 8
I 11

problem: many values can change

Q. How to implement union(p, q)?
A. Change all entries whose identifier equals id[p] to id[q].

36

Quick-find demo

union(4, 3)

idll 0 1 2 3§
t 1

5 6 7 8 9

Quick-find demo

union(3, 8)

@O O & 3 O,

& © O © ¢

Quick-find demo

union(6, 5)

@O O & 3 O,

O—© o ©© ¢

id[1012885789
r 4

Quick-find demo

union(9, 4)

@O O & 3

Quick-find demo

union(2, 1)

@ O——=0) 3

O—© O &

Quick-find demo

connected(8, 9)

@ O—=) 3

O—© O &

idl 0 1 1 8 8 5 5 7 8 8
t ot

true

Quick-find demo

connected(5, 0)

@ O—=) 3

O—© O &

idl 0 1 1 8 8 5 5 7 8 8
))

false

Quick-find demo

union(5, 0)

id[101188nn788
0

Quick-find demo

union(7, 2)

Quick-find demo

union(6, 1)

Quick-find demo

id[]

1

1

1

Quick-find: Java implementation

public class QuickFindUF

{
private int[] id;

public QuickFindUF(int n)

{
id = new int[n];
for (int i = 0; 1 < n; i++)
id[i1] = 1;
}

public int find(int p)
{ return id[p]l; }

public void union(int p, int q)
{
int pid = id[p];
int qid = id[q];
for (int i = 0; 1 < id.length; 1++)
if (id[i] == pid) id[i] = qid;

A

—

e

set id of each element to itself
(n array accesses)

return the id of p
(1 array access)

change all entries with id[p] to id[q]
(n+2 to 2n+2 array accesses)

48

Quick-find: Java implementation

public void union(int p, int q)

{
int pid = id[p];
int gqid = id[q];
for (int 1 = 0; 1 < id.length; 1++)
if (id[i] == pid) id[i] = qid;
}

Q. What’s wrong with this instead?

public void union(int p, int q)

{
for (int i = 0; i < id.length; i++)
if (id[i] == id[p]) id[i] = id[ql;

A. id[p] may change part-way through the loop!

49

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

R TN

quick-find

number of array accesses (ignoring leading constant)

Union is too expensive. Processing a sequence of » union operations
on n elements takes more than n2? array accesses.

N\

quadratic

50

Quadratic algorithms do not scale

Rough standard (for now).
. trui hl
e 109 operations per second. : ;“;;2‘{‘;‘;3! Y
e 109 words of main memory. /

« Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
e 10% union commands on 109 elements.
e Quick-find takes more than 1018 operations.
e 30+ years of computer time!

Quadratic algorithms don't scale with technology.
« New computer may be 10x as fast.
« But, has 10x as much memory =
want to solve a problem that is 10x as big.
« With quadratic algorithm, takes 10x as long!

time

64T

32T

quadratic

l[imit on
available time

16T . . .
linearithmic
8T -
linear

| | |
size — 1K 2K 4K

|
8K

51

1.5 UNION-FIND

» quick union

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.
e Integer array parent[] of length n, where parent[i] is parent of i in tree.
e Interpretation: elements in a tree corresponding to a set.

A
019@@6678@ O ¥ © 0

p &
find(i) =9 parent of 3 is 4

A root of 3 is 9
{0r{13:{2,3,4,9}r{5, 6}{7} {8}

6 disjoint sets (6 trees)

Q. How to implement find(p) operation?
A. Return root of tree containing p.

53

Quick-union [lazy approach]

Data structure.
e Integer array parent[] of length n, where parent[i] is parent of i in tree.
e Interpretation: elements in a tree corresponding to a set.

union3,5 O 1 9 4 9 6 6 7 8 9 @@ @
ONO q

Q. How to implement union(p, q)?
A. Set parent of p's root to g's root.

54

Quick-union [lazy approach]

Data structure.
e Integer array parent[] of length n, where parent[i] is parent of i in tree.
e Interpretation: elements in a tree corresponding to a set.

© O ONONO.

wnion3,5y 0 1 9 4 9 6 6 7 sn

only one value changes

Q. How to implement union(p, q)?
A. Set parent of p's root to g's root.

55

Quick-union demo

ONONONONORORORONORO

o 1 2 3 4 5 6 7 8 9

Quick-union demo

union(4, 3)

ONONONONORORORONORO

o 1 2 3 4 5 6 7 8 9

Quick-union demo

union(4, 3)

@@@ ONONORONO
QO

o 1 2 3 3 5 6 7 8 9

Quick-union demo

@@@@@@@
O

o 1 2 3 3 5 6 7 8 9

Quick-union demo

union(3, 8)

@@@@@@@
O

o 1 2 3 3 5 6 7 8 9

Quick-union demo

union(3, 8)

© O & O ONONBONO
O

o 1 2 8 3 5 6 7 8 9

Quick-union demo

© 0 o 6o 6 0 6 ¢
Q,
O,

o 1 2 8 3 5 6 7 8 9

Quick-union demo

union(6, 5)

© 0 o 6o 6 0 6 ¢
Q,
O,

o 1 2 8 3 5 6 7 8 9

Quick-union demo

union(6, 5)

@@@ O ©® ©
O

o 1 2 8 3 5 5 7 8 9

Quick-union demo

o 1 2 8 3 5 5 7 8 9

Quick-union demo

union(9, 4)

© O & O © O
©

O,

o 1 2 8 3 5 5 7 8 9

Quick-union demo

union(9, 4)

@@@@8
© Q,
O,

o 1 2 8 3 5 5 7 8 8

Quick-union demo

@@@@8
© Q,
O,

o 1 2 8 3 5 5 7 8 8

Quick-union demo

union(2, 1)

@@@@8
© Q,
O,

o 1 2 8 3 5 5 7 8 8

Quick-union demo

union(2, 1)

Quick-union demo

Quick-union demo

find(8) == find(9)

(00]

Ci?) I Q

o 1 1 8 3 5 5 7 8 8

Quick-union demo

find(5) == find(4))

@ Ci?) @ Q

O,

(00]

o 1 1 8 3 5 5 7 8 8

Quick-union demo

union(5, 0)

O i O

Quick-union demo

union(5, 0)

Quick-union demo

o 1 1 8 3 0 5 7 8 8

Quick-union demo

union(7, 2)

Quick-union demo

union(7, 2)

o 1 1 8 3 0 5 1 8 8

Quick-union demo

o 1 1 8 3 0 5 1 8 8

Quick-union demo

union(6, 1)

)

1

1

8 3 0 5 1

8

8

Quick-union demo

union(6, 1)

Quick-union demo

Quick-union demo

union(7, 3)

Quick-union demo

union(7, 3)

Quick-union demo

Quick-union: Java implementation

public class QuickUnionUF

{

private int[] parent;

public QuickUnionUF(int N)

{
parent = new int[N];
for (int i = 0; 1 < N; i++)

parent[i1] = 1;

}

public int find(int p)

{
while (p != parent[p])

p = parent[p];

return p;

}

public void union(int p, int q)

{
int i = find(p);
int j = find(q);
parent[i1] = 7J;

}

}

A

A

A

set parent of each element to itself
(N array accesses)

chase parent pointers until reach root
(depth of p array accesses)

change root of p to point to root of g
(depth of p and g array accesses)

86

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

R TR

quick-find
quick-union n nt n <«—— worst case
1 includes cost of finding two roots
worst-case input
. . 4 -
Quick-find defect. O, R
union(O0,
« Union too expensive (more than n array accesses). (3) union(0, 3
« Trees are flat, but too expensive to keep them flat. T <)
@
Quick-union defect. 0
e Trees can get tall.

* Find too expensive (could be more than » array accesses). @

1.5 UNION-FIND

Algorithms

» Improvements

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Improvement 1: weighting

Weighted quick-union.

« Modify quick-union to avoid tall trees.

« Keep track of size of each tree (number of elements).

« Always link root of smaller tree to root of larger tree.

quick-union @ @
smaller /
tree @
smaller larger
tree
] ~ might put the free
arger larger tree lower
tree
weighted
~always chooses the @
<« better alternative /
larger smaller smaller larger
tree tree free tree

N

reasonable alternative:

union by height/rank

89

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick union is:

0]

parenti 0 O O O O O 7 8 8 8 0

OO O
Q

Which parent[] entry changes during union(2, 6)?
A. parent[0]
B. parent[2]
C. parent[6]
D.

parent[8]

90

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick union is:

parentf] 0 O O O O O 7 8 8

Which parent[] entry changes during union(2, 6)?
A. parent[0]
B. parent[2]

C. parent[6]

parent[8]

91

Quick-union vs. weighted quick-union

quick-union

g L

average distance to root: 5.11

weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

92

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i]

to count number of elements in the tree rooted at 1, initially 1.

Find. Identical to quick-union.

Union. Modify quick-union to:
o Link root of smaller tree to root of larger tree.
e Update the size[] array.

int 1 = find(p);

int j = find(q);

if (1 == j) return;

1f (size[1] < si1ize[j]) { parent[i] j; sizel[j] += size[1]; }
else { parent[j] = 1; si1ze[1] += size[]j]; }

93

Weighted quick-union analysis

Running time.
e Find: takes time proportional to depth of p.
« Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most Ign. <—

n=10
depth(x) =3 < Ign

in computer science,
lg means base-2 logarithm

94

Weighted quick-union analysis

Running time.
e Find: takes time proportional to depth of p.

« Union: takes constant time, given two roots.
Proposition. Depth of any node x is at most Ign. <— :g ;"e“;ﬂ’;’f;j;_ij;rithm
Pf. What causes the depth of element x to increase?

Increases by 1 when root of tree 71 containing x is linked to root of tree 7».

« The size of the tree containing x at least doubles since | T2| = | T1|.

e Size of tree containing x can double at most Ig n times. Why?

S
—

95

Weighted quick-union analysis

Running time.
e Find: takes time proportional to depth of p.
e Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most Ig n.

NN

quick-find
quick-union n nt n
weighted QU n lognf log n

1 includes cost of finding two roots

log mean logarithm,
for some constant base

96

Summary

Key point. Weighted quick union makes it possible to solve problems that
could not otherwise be addressed.

quick-find mn
quick-union mn
weighted QU n+mlogn

order of growth for m union-find operations on a set of n elements

Ex. [10° unions and finds with 10° elements]
« WQUPC reduces time from 30 years to 6 seconds.
« Supercomputer won't help much; good algorithm enables solution.

97

1.5 UNION-FIND

Algorithms

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Union-find applications

o Percolation.
« Games (Go, Hex).
e Least common ancestor.
v Dynamic-connectivity problem.
« Equivalence of finite state automata.
« Hoshen-Kopelman algorithm in physics.
« Hindley—Milner polymorphic type inference.
e Kruskal's minimum spanning tree algorithm.
« Compiling equivalence statements in Fortran.
« Morphological attribute openings and closings.

« Matlab's bwlabel() function in image processing.

99

Percolation

An abstract model for many physical systems:
* n-by-n grid of sites.
» Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

AN

if and only if

percolates does not percolate
. blocked
site

open —

e N\ N7
open site connected to top

no open site connected to top

100

Percolation

An abstract model for many physical systems:
* n-by-n grid of sites.
» Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

electricity material conductor insulated conducts
fluid flow material empty blocked porous

social interaction population person empty communicates

101

Likelihood of percolation

Depends on grid size n and site vacancy probability p.

p low (0.4) p medium (0.6) p high (0.8)
does not percolate percolates? percolates

empty open site full open site
(not connected to top) (connected to top)

102

Percolation phase transition

When »n is large, theory guarantees a sharp threshold p*.

e p > p*: almost certainly percolates.
e p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation |
probability

’p-.'.-
OI""l I

0 0.593 1

100 site vacancy probability p

103

Monte Carlo simulation

Initialize all sites in an n-by-n grid to be blocked.

Declare random sites open until top connected to bottom.

Vacancy percentage estimates p*.

Repeat many times to get more accurate estimate.

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

n=20 135 open sites

104

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?

A. Model as a dynamic-connectivity problem problem and use union—find.

open site

. blocked site

105

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?

e Create an element for each site, named 0 to n2—1.

®® 6 -G
®e 06006
®O 600
®e 0060
®E6 06

open site

. blocked site

106

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?
e Create an element for each site, named 0 to n2—1.
« Add edge between two adjacent sites if they’re both open.

4 possible neighbors: left, right, top, bottom

n=s o—o o o o
o 6 6 ¢ o

O 6 6 0

o 6 o ©o

o 0690

open site

. blocked site

107

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?

e Create an element for each site, named 0 to n2—1.

« Add edge between two adjacent sites if they both open.

« Percolates iff any site on bottom row is connected to any site on top row.

open site

. blocked site

brute-force algorithm: 2n find queries

—9 O O O w©row
® 6 6 ¢ o
® 6 6 0 °
® 6 o ©

® O @ otomrow

108

Dynamic-connectivity solution to estimate percolation threshold

Clever trick. Introduce 2 virtual sites (and edges to top and bottom).

open site

. blocked site

e Percolates iff virtual top site is connected to virtual bottom site.

N

more efficient algorithm: only 1 connected query

virtual top site

o—0® O O O o
O ¢ 6 o o
O 6 6 6o
® & o ©

® OO otomrow

virtual bottom site

109

Dynamic-connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

open this site

n=s o—o o o ©°
o 6 6 ¢ o

O 6 6 0

o 6 o ©o

O 00

open site

. blocked site

110

Dynamic-connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

A. Mark new site as open; add edge to any adjacent site that is open.

N

adds up to 4 edges

open this site

o—o o o ©°
o 6 6 ¢ o

O 00

open site

. blocked site .

Percolation threshold

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.
N

constant known only via simulation

percolation |

probability

{. p*
0 | I
1

0 0.593

100 site vacancy probability p

Fast algorithm enables accurate answer to scientific question.

112

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

« Model the problem.

Find an algorithm to solve it.

Correct? Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.
lterate until satisfied.

The scientific method.

Mathematical analysis.

113

