
COS 226, SPRING 2016

ALGORITHMS  
AND  

DATA STRUCTURES

ARVIND NARAYANAN

http://www.princeton.edu/~cos226

2

What is COS 226?

・Intermediate-level survey course.

・Programming and problem solving, with applications.

・Algorithm: method for solving a problem.

・Data structure: method to store information.

topic data structures and algorithms

data types stack, queue, bag, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching BST, red-black BST, hash table

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, tries, data compression

advanced B-tree, kd-tree, suffix array, maxflow

COS 226 course overview

3

Why study algorithms?

They may unlock the secrets of life and of the universe.

4

Why study algorithms?

“ Computer models mirroring real life have become crucial for most  
 advances made in chemistry today…. Today the computer is just as  
 important a tool for chemists as the test tube. ”  
 — Royal Swedish Academy of Sciences  
 (Nobel Prize in Chemistry 2013)

Martin Karplus, Michael Levitt, and Arieh Warshel

To solve problems that could not otherwise be addressed.

5

Why study algorithms?

http://www.youtube.com/watch?v=ua7YlN4eL_w

Old roots, new opportunities.

・Study of algorithms dates at least to Euclid.

・Named after Muḥammad ibn Mūsā al-Khwārizmī.

・Formalized by Church and Turing in 1930s.

・Some important algorithms were discovered 
by undergraduates in a course like this!

6

Why study algorithms?
3

0
0

 B
C

E

8
2

5

1
9

2
0

s

1
9

3
0

s

1
9

4
0

s

1
9

5
0

s

1
9

6
0

s

1
9

7
0

s

1
9

8
0

s

1
9

9
0

s

2
0

0
0

s

7

For intellectual stimulation.

Why study algorithms?

“ For me, great algorithms are the poetry of computation. Just  
 like verse, they can be terse, allusive, dense, and even mysterious.  
 But once unlocked, they cast a brilliant new light on some  
 aspect of computing. ” — Francis Sullivan

2 COMPUTING IN SCIENCE& ENGINEERING

Computational algorithms are probably as old as civilization.
Sumerian cuneiform, one of the most ancient written records,
consists partly of algorithm descriptions for reckoning in base
60. And I suppose we could claim that the Druid algorithm for
estimating the start of summer is embodied in Stonehenge.
(That’s really hard hardware!)

Like so many other things that technology affects, algo-
rithms have advanced in startling and unexpected ways in the
20th century—at least it looks that way to us now. The algo-
rithms we chose for this issue have been essential for progress
in communications, health care, manufacturing, economics,
weather prediction, defense, and fundamental science. Con-
versely, progress in these areas has stimulated the search for
ever-better algorithms. I recall one late-night bull session on
the Maryland Shore when someone asked, “Who first ate a
crab? After all, they don’t look very appetizing.’’ After the usual
speculations about the observed behavior of sea gulls, someone
gave what must be the right answer—namely, “A very hungry
person first ate a crab.”

The flip side to “necessity is the mother of invention’’ is “in-
vention creates its own necessity.’’ Our need for powerful ma-
chines always exceeds their availability. Each significant com-
putation brings insights that suggest the next, usually much
larger, computation to be done. New algorithms are an attempt
to bridge the gap between the demand for cycles and the avail-
able supply of them. We’ve become accustomed to gaining the
Moore’s Law factor of two every 18 months. In effect, Moore’s
Law changes the constant in front of the estimate of running
time as a function of problem size. Important new algorithms
do not come along every 1.5 years, but when they do, they can
change the exponent of the complexity!

For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even

mysterious. But once unlocked, they cast a brilliant new light
on some aspect of computing. A colleague recently claimed
that he’d done only 15 minutes of productive work in his
whole life. He wasn’t joking, because he was referring to the
15 minutes during which he’d sketched out a fundamental op-
timization algorithm. He regarded the previous years of
thought and investigation as a sunk cost that might or might
not have paid off.

Researchers have cracked many hard problems since 1 Jan-
uary 1900, but we are passing some even harder ones on to the
next century. In spite of a lot of good work, the question of
how to extract information from extremely large masses of
data is still almost untouched. There are still very big chal-
lenges coming from more “traditional” tasks, too. For exam-
ple, we need efficient methods to tell when the result of a large
floating-point calculation is likely to be correct. Think of the
way that check sums function. The added computational cost
is very small, but the added confidence in the answer is large.
Is there an analog for things such as huge, multidisciplinary
optimizations? At an even deeper level is the issue of reason-
able methods for solving specific cases of “impossible’’ prob-
lems. Instances of NP-complete problems crop up in at-
tempting to answer many practical questions. Are there
efficient ways to attack them?

I suspect that in the 21st century, things will be ripe for an-
other revolution in our understanding of the foundations of
computational theory. Questions already arising from quan-
tum computing and problems associated with the generation
of random numbers seem to require that we somehow tie to-
gether theories of computing, logic, and the nature of the
physical world.

The new century is not going to be very restful for us, but it
is not going to be dull either!

THEJOY OF ALGORITHMS

Francis Sullivan, Associate Editor-in-Chief

THE THEME OF THIS FIRST-OF-THE-CENTURY ISSUE OF COMPUTING IN

SCIENCE & ENGINEERING IS ALGORITHMS. IN FACT, WE WERE BOLD

ENOUGH—AND PERHAPS FOOLISH ENOUGH—TO CALL THE 10 EXAMPLES WE’VE SE-

LECTED “THE TOP 10 ALGORITHMS OF THE CENTURY.”

F R O M T H E
ED I T O R S

For fun and profit.

8

Why study algorithms?

・Their impact is broad and far-reaching.

・They may unlock the secrets of life and of the universe.

・To solve problems that could not otherwise be addressed.

・Old roots, new opportunities.

・To become a proficient programmer.

・For intellectual stimulation.

・For fun and profit.

9

Why study algorithms?

Why study anything else?

10

Resources (web)

http://www.princeton.edu/~cos226

11

Resources (web)

http://www.princeton.edu/~cos226

12

Discussion, problem-solving, background for assignments.

Precepts

13

Programming assignments. 45%

・Due at 11pm on Tuesdays via electronic submission.

・Collaboration/lateness policies: see web.

 
Exercises. 10%

・Due at 11pm on Sundays via Blackboard.

・Collaboration/lateness policies: see web.

 
Exams. 15% + 25%

・Midterm (in class on Wednesday, March 11).

・Final (to be scheduled by Registrar).

 
Participation. 5%

・Attend and participate in precept/lecture.

・Answer questions on Piazza.

Coursework and grading

Programming
Assignments

Final
Exam

Midterm
Exam

Exercises

Participation

14

Required device for lecture.

・Any hardware version of i▸clicker.

・Use default frequency AA.

・Available at Labyrinth Books ($25).

・You must register your i▸clicker in Blackboard.

 (sorry, insufficient WiFi in this room to support i▸clicker GO)

 
We’ll start using them on Wednesday.

save serial number
to maintain resale value

Electronic devices: Permitted, but only to enhance lecture.

no no no

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,

Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

 
 
 
 
 
 
 
 
 
 
Available in hardcover and Kindle.

・Online: Amazon ($60 hardcover, $50 Kindle, $20 rent), ...

・Brick-and-mortar: Labyrinth Books (122 Nassau St.).

・On reserve: Engineering library.
16

Resources (textbook)

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

1st edition (1982) 3rd edition (1997)2nd edition (1988)

4th edition (2011)

Course content.

・Course info.

・Lecture slides.

・Flipped lectures.

・Programming assignments.

・Exercises.

・Exam archive.

 
 
Booksite.

・Brief summary of content.

・Download code from book.

・APIs and Javadoc.

17

Resources (web)

http://algs4.cs.princeton.edu

Piazza discussion forum.

・Low latency, low bandwidth.

・Mark solution-revealing questions 
as private.

 
 
Office hours.

・High bandwidth, high latency.

・See web for schedule.

 
 
Computing laboratory.

・Undergrad lab TAs.

・For help with debugging.

・See web for schedule.

18

Resources (people)

http://piazza.com/princeton/spring2015/cos226

http://www.princeton.edu/~cos226

http://labta.cs.princeton.edu

19

Today. Attend traditional lecture (everyone).

Wednesday. Attend traditional/flipped lecture.

Thursday/Friday. Attend precept (everyone).

 
FOR i = 1 to N 
 Sunday: two sets of exercises due.  
 Monday: traditional/flipped lecture. 
 Tuesday: programming assignment due. 
 Wednesday: traditional/flipped lecture. 
 Thursday/Friday: precept.

What's ahead?

protip: start early

20

Not registered? Go to any precept this week. 
Change precept? Use TigerHub. 
All possible precepts closed? See Colleen Kenny-McGinley in CS 210.

 
Haven't taken COS 126? See COS placement officer. 
Placed out of COS 126? Review Sections 1.1–1.2 of Algorithms 4/e.

Q+A

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/3/16 11:26 PM

‣ dynamic-connectivity problem

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION–FIND

Steps to developing a usable algorithm to solve a computational problem.

22

Subtext of today’s lecture (and this course)

correct?
efficient?

no

yes

model the
problem

design an
algorithm

understand
why not

solve the
problem

try again

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic-connectivity problem

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION–FIND

Given a set of N elements, support two operations:

・Connection command: directly connect two elements with an edge.

・Connection query: is there a path connecting two elements?

24

Dynamic-connectivity problem

connect 4 and 3

connect 3 and 8

connect 6 and 5

connect 9 and 4

connect 2 and 1

are 8 and 9 connected?
are 5 and 7 connected?

connect 5 and 0

connect 7 and 2

are 5 and 7 connected?

connect 1 and 0

connect 6 and 1

0 1 2 3 4

5 6 7 8 9
✔

𐄂

✔

Q. Is there a path connecting elements p and q ?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A. Yes.

25

A larger connectivity example

p

q

finding the path explicitly is a harder problem
(second half of the course)

Applications involve manipulating elements of all types.

・Pixels in a digital photo.

・Computers in a network.

・Friends in a social network.

・Transistors in a computer chip.

・Elements in a mathematical set.

・Variable names in a Fortran program.

・Metallic sites in a composite system.

When programming, convenient to name elements 0 to n – 1.

・Use integers as array index.

・Suppress details not relevant to union–find.

26

Modeling the elements

Later in the course:  
how to translate from names to integers

Algorithms in nature

Slime mold in a maze, with food placed at the start and end points

27

 
 
Connected component. Maximal set of elements that are mutually connected.

28

Modeling the connections

0 1 2 3

4 5 6 7

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

3 disjoint sets
(connected components)

Union. Replace set p and q with their union.

Find. In which set is element p ?

29

Two core operations on disjoint sets

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

3 disjoint sets

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

union(2, 5) find(5) == find(6) ✔

30

Q. How to model the dynamic-connectivity problem using union–find?

A. Maintain disjoint sets that correspond to connected components.

・Connect elements p and q.

・Are elements p and q connected?

Modeling the dynamic-connectivity problem using union–find

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

3 disjoint sets

0 1 2 3

4 5 6 7

3 connected components

0 1 2 3

4 5 6 7

2 connected components

union(2, 5)

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

connect 2 and 5 are 5 and 6 connected?

find(5) == find(6) ✔

31

Relatively straightforward expression of problem statement in Java

Union–find data type (API)

 public class UF

UF(int n)
initialize union–find data structure  

with n singleton sets (0 to n – 1)

void union(int p, int q)
merge sets containing

elements p and q

int find(int p)
identifier for set containing

element p (0 to n – 1)

Up next: two simple union-find algorithms

Difficulty:

・Number of elements n can be huge.

・Number of operations m can be huge.

・Union and find operations can be intermixed.

32

Data could come from large social network with billions of nodes

33

・Read in number of elements n from standard input.

・Repeat:

– read in pair of integers from standard input

– if they are not yet connected, connect them and print pair

Dynamic-connectivity client

public static void main(String[] args)
{
 int n = StdIn.readInt();
 UF uf = new UF(n);
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt();
 if (uf.find(p) != uf.find(q))
 {
 uf.union(p, q);
 StdOut.println(p + " " + q);
 }
 }
}

% more tinyUF.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

already connected
(don't print these)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic-connectivity problem

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION–FIND

35

Data structure.

・Integer array id[] of length n.

・Interpretation: id[p] identifies the set containing element p.

 
 
 
 
 
 
 
 
 
 
Q. How to implement find(p)?

A. Easy, just return id[p].

Quick-find [eager approach]

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

{ 0, 5, 6 } { 1, 2, 7 } { 3, 4, 8, 9 }

id[i] = 0

3 disjoint sets

id[i] = 1 id[i] = 8

36

Data structure.

・Integer array id[] of length n.

・Interpretation: id[p] identifies the set containing element p.

 
 
 
 
 
 
 
 
 
 
Q. How to implement union(p, q)?

A. Change all entries whose identifier equals id[p] to id[q].

Quick-find [eager approach]

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

union(6, 1)

problem: many values can change

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

union(4, 3)

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

id[] 3

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

2 3

2 3

3 5

4 5

6 7

6 7

8 9

8 9

8 8

union(3, 8)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

2 8

2 3

8 5

4 5

6 7

6 7

8 9

8 9

5

union(6, 5)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

2 8

2 3

8 5

4 5

5 7

6 7

8 9

8 9

8

union(9, 4)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

2 8

2 3

8 5

4 5

5 7

6 7

8 8

8 9

1

union(2, 1)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 5

4 5

5 7

6 7

8 8

8 9

true

connected(8, 9)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 5

4 5

5 7

6 7

8 8

8 9

false

connected(5, 0)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 5

4 5

5 7

6 7

8 8

8 9

0 0

union(5, 0)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 0

4 5

0 7

6 7

8 8

8 9

1

union(7, 2)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

111

union(6, 1)

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

public class QuickFindUF  
{ 
 private int[] id;  

 public QuickFindUF(int n) 
 { 
 id = new int[n];  
 for (int i = 0; i < n; i++) 
 id[i] = i;  
 }
 
 public int find(int p)  
 { return id[p]; }
 
 public void union(int p, int q) 
 { 
 int pid = id[p];  
 int qid = id[q];  
 for (int i = 0; i < id.length; i++) 
 if (id[i] == pid) id[i] = qid; 
 } 
}

48

Quick-find: Java implementation

set id of each element to itself 
(n array accesses)

change all entries with id[p] to id[q]
(n+2 to 2n+2 array accesses)

return the id of p
(1 array access)

 public void union(int p, int q) 
 { 
 int pid = id[p];  
 int qid = id[q];  
 for (int i = 0; i < id.length; i++) 
 if (id[i] == pid) id[i] = qid; 
 }

 public void union(int p, int q) 
 { 
 for (int i = 0; i < id.length; i++) 
 if (id[i] == id[p]) id[i] = id[q]; 
 }

49

Quick-find: Java implementation

Q. What’s wrong with this instead?

A. id[p] may change part-way through the loop!

Cost model. Number of array accesses (for read or write).

 
 
 
 
 
 
 
 
 
 
Union is too expensive. Processing a sequence of n union operations  
on n elements takes more than n2 array accesses.

50

Quick-find is too slow

algorithm initialize union find

quick-find n n 1

number of array accesses (ignoring leading constant)

quadratic

Rough standard (for now).

・109 operations per second.

・109 words of main memory.

・Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

・109 union commands on 109 elements.

・Quick-find takes more than 1018 operations.

・30+ years of computer time!

Quadratic algorithms don't scale with technology.

・New computer may be 10x as fast.

・But, has 10x as much memory ⇒  
want to solve a problem that is 10x as big.

・With quadratic algorithm, takes 10x as long!

51

a truism (roughly) 
since 1950!

Quadratic algorithms do not scale

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic-connectivity problem

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION–FIND

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

Data structure.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

・Interpretation: elements in a tree corresponding to a set.

 
 
 
 
 
 
 
 
 
 
Q. How to implement find(p) operation?

A. Return root of tree containing p.

53

Quick-union [lazy approach]

5

70 1 6 8

2

{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }

6 disjoint sets (6 trees)

find(i) = 9

root of 3 is 9

9

parent of 3 is 4

p 3

4

3

Data structure.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

・Interpretation: elements in a tree corresponding to a set. 
 

 
 
 
 
 
Q. How to implement union(p, q)?

54

Quick-union [lazy approach]

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 6 8

2

9

p 3

4

3

5 q

union(3, 5)

A. Set parent of p's root to q's root.

Data structure.

・Integer array parent[] of length n, where parent[i] is parent of i in tree.

・Interpretation: elements in a tree corresponding to a set. 
 

 
 
 
 
 
Q. How to implement union(p, q)?

55

Quick-union [lazy approach]

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

only one value changes

5

70 1 6 8

2

9

p 3

4

3

5 q

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

union(3, 5)

A. Set parent of p's root to q's root.

Quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 3 4 5 6 7 8 9

union(4, 3)

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 3

4

5 6 7 8 9

union(4, 3)

0 1

0 1

2 3

2 3

3 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 3

4

5 6 7 8 9

0 1

0 1

2 3

2 3

3 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5 6 7 8 93

4

union(3, 8)

0 1

0 1

2 3

2 3

3 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5 6 7 8 9

3

4

union(3, 8)

0 1

0 1

2 8

2 3

3 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5 6 7 8 9

3

4

0 1

0 1

2 8

2 3

3 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5 6 7

3

4

8 9

union(6, 5)

0 1

0 1

2 8

2 3

3 5

4 5

6 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5

6

7

3

4

8 9

union(6, 5)

0 1

0 1

2 8

2 3

3 5

4 5

5 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5

6

7

3

4

8 9

0 1

0 1

2 8

2 3

3 5

4 5

5 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5

6

7

3

4

8 9

union(9, 4)

0 1

0 1

2 8

2 3

3 5

4 5

5 7

6 7

8 9

8 9

Quick-union demo

0 1 2 5

6

7

3

4

8

9

union(9, 4)

0 1

0 1

2 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1 2 5

6

7

3

4

8

9

0 1

0 1

2 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1 2 5

6

7

3

4

8

9

union(2, 1)

0 1

0 1

2 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

2

5

6

7

3

4

8

9

union(2, 1)

0 1

0 1

1 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

2

5

6

7

3

4

8

9

0 1

0 1

1 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

2

5

6

7

3

4

8

9

find(8) == find(9)

0 1

0 1

1 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

✔

Quick-union demo

0 1

2

5

6

7

3

4

8

9

find(5) == find(4)

0 1

0 1

1 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

𐄂

Quick-union demo

0 1

2

5

6

7

3

4

8

9

union(5, 0)

0 1

0 1

1 8

2 3

3 5

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

25

6

7

3

4

8

9

union(5, 0)

0 1

0 1

1 8

2 3

3 0

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

25

6

7

3

4

8

9

0 1

0 1

1 8

2 3

3 0

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

25

6

7

3

4

8

9

union(7, 2)

0 1

0 1

1 8

2 3

3 0

4 5

5 7

6 7

8 8

8 9

Quick-union demo

0 1

25

6

7 3

4

8

9

union(7, 2)

0 1

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0 1

25

6

7 3

4

8

9

0 1

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0 1

25

6

7 3

4

8

9

union(6, 1)

0 1

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0

1

2

5

6

7 3

4

8

9

union(6, 1)

1 1

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0

1

2

5

6

7 3

4

8

9

1 1

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0

1

2

5

6

7 3

4

8

9

union(7, 3)

1 1

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0

1

2

5

6

7

3

4

8

9

union(7, 3)

1 8

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union demo

0

1

2

5

6

7

3

4

8

9

1 8

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

Quick-union: Java implementation

public class QuickUnionUF 
{ 
 private int[] parent;
 
 public QuickUnionUF(int N) 
 { 
 parent = new int[N]; 
 for (int i = 0; i < N; i++)  
 parent[i] = i; 
 } 

 public int find(int p) 
 { 
 while (p != parent[p]) 
 p = parent[p]; 
 return p; 
 } 

 public void union(int p, int q)  
 { 
 int i = find(p);  
 int j = find(q);  
 parent[i] = j; 
 } 
}

set parent of each element to itself  
(N array accesses)

chase parent pointers until reach root
(depth of p array accesses)

change root of p to point to root of q
(depth of p and q array accesses)

86

Cost model. Number of array accesses (for read or write).

 
 
 
 
 
 
 
 
Quick-find defect.

・Union too expensive (more than n array accesses).

・Trees are flat, but too expensive to keep them flat.

 
Quick-union defect.

・Trees can get tall.

・Find too expensive (could be more than n array accesses).

algorithm initialize union find

quick-find n n 1

quick-union n n † n

87

worst case 

† includes cost of finding two roots

Quick-union is also too slow

0

1

2

3

4 union(0, 1)
union(0, 2)
union(0, 3)
union(0, 4)

worst-case input

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic-connectivity problem

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION–FIND

Weighted quick-union.

・Modify quick-union to avoid tall trees.

・Keep track of size of each tree (number of elements).

・Always link root of smaller tree to root of larger tree.

89

Improvement 1: weighting

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

reasonable alternative:
union by height/rank

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

9

6

7

8

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick union is:

 
 
 
 
 
Which parent[] entry changes during union(2, 6)?

A. parent[0]

B. parent[2]

C. parent[6]

D. parent[8]
90

0 0

0 1

0 0

2 3

0 0

4 5

7 8

6 7

8 8

8 9

parent[]

32

0

1 54

Suppose that the parent[] array during weighted quick union is:

 
 
 
 
 
Which parent[] entry changes during union(2, 6)?

A. parent[0]

B. parent[2]

C. parent[6]

D. parent[8]

Weighted quick-union quiz

91

0 0

0 1

0 0

2 3

0 0

4 5

7 8

6 7

8 8

8 9

parent[]

32

0

1 54

9

6

7

8

92

Quick-union vs. weighted quick-union

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

93

Data structure. Same as quick-union, but maintain extra array size[i]  

to count number of elements in the tree rooted at i, initially 1.

 
Find. Identical to quick-union.

 
Union. Modify quick-union to:

・Link root of smaller tree to root of larger tree.

・Update the size[] array.

 int i = find(p);

 int j = find(q);
 if (i == j) return;

 if (size[i] < size[j]) { parent[i] = j; size[j] += size[i]; }

 else { parent[j] = i; size[i] += size[j]; }

Weighted quick-union: Java implementation

Running time.

・Find: takes time proportional to depth of p.

・Union: takes constant time, given two roots.

 
Proposition. Depth of any node x is at most lg n.

94

Weighted quick-union analysis

in computer science, 
lg means base-2 logarithm

x
 n = 10

depth(x) = 3 ≤ lg n

2

1

0

11

2 22

depth 3

1

95

Running time.

・Find: takes time proportional to depth of p.

・Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most lg n.

Pf. What causes the depth of element x to increase?

Increases by 1 when root of tree T1 containing x is linked to root of tree T2.

・The size of the tree containing x at least doubles since | T 2 | ≥ | T 1 |.

・Size of tree containing x can double at most lg n times. Why?

Weighted quick-union analysis

 T2

T1

x

1

2

4

8

16

⋮

n

lg n

in computer science, 
lg means base-2 logarithm

96

Running time.

・Find: takes time proportional to depth of p.

・Union: takes constant time, given two roots.

 
Proposition. Depth of any node x is at most lg n.

† includes cost of finding two roots

Weighted quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n † n

weighted QU n log n † log n log mean logarithm,
for some constant base

Key point. Weighted quick union makes it possible to solve problems that

could not otherwise be addressed.

 
 
 
 
 
 
 
 
 
 
 
Ex. [109 unions and finds with 109 elements]

・WQUPC reduces time from 30 years to 6 seconds.

・Supercomputer won't help much; good algorithm enables solution.
97

order of growth for m union–find operations on a set of n elements

algorithm worst-case time

quick-find m n

quick-union m n

weighted QU n + m log n

QU + path compression n + m log n

weighted QU + path compression n + m log*n

Summary

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic-connectivity problem

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION–FIND

・Percolation.

・Games (Go, Hex).

・Least common ancestor.

✓ Dynamic-connectivity problem.

・Equivalence of finite state automata.

・Hoshen–Kopelman algorithm in physics.

・Hindley–Milner polymorphic type inference.

・Kruskal's minimum spanning tree algorithm.

・Compiling equivalence statements in Fortran.

・Morphological attribute openings and closings.

・Matlab's bwlabel() function in image processing.

99

Union–find applications

An abstract model for many physical systems:

・n-by-n grid of sites.

・Each site is open with probability p (and blocked with probability 1 – p).

・System percolates iff top and bottom are connected by open sites.

100

Percolation

does not percolatepercolates

open site connected to top

blocked
site

open
site

no open site connected to topn = 8

if and only if

An abstract model for many physical systems:

・n-by-n grid of sites.

・Each site is open with probability p (and blocked with probability 1 – p).

・System percolates iff top and bottom are connected by open sites.

101

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on grid size n and site vacancy probability p.

102

Likelihood of percolation

p low (0.4)
does not percolate

p medium (0.6)
percolates?

p high (0.8)
percolates

empty open site 
(not connected to top)

full open site 
(connected to top) blocked site

When n is large, theory guarantees a sharp threshold p*.

・p > p*: almost certainly percolates.

・p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

103

Percolation phase transition

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

n = 100

・Initialize all sites in an n-by-n grid to be blocked.

・Declare random sites open until top connected to bottom.

・Vacancy percentage estimates p*.

・Repeat many times to get more accurate estimate.

104

Monte Carlo simulation

n = 20

empty open site 
(not connected to top)

full open site 
(connected to top)

blocked site

p̂ =
204

400
= 0.51

105

Q. How to check whether an n-by-n system percolates?

A. Model as a dynamic-connectivity problem problem and use union–find.

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5

Q. How to check whether an n-by-n system percolates?

・Create an element for each site, named 0 to n2 – 1.

106

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

107

Q. How to check whether an n-by-n system percolates?

・Create an element for each site, named 0 to n2 – 1.

・Add edge between two adjacent sites if they’re both open.

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5

4 possible neighbors: left, right, top, bottom

108

Q. How to check whether an n-by-n system percolates?

・Create an element for each site, named 0 to n2 – 1.

・Add edge between two adjacent sites if they both open.

・Percolates iff any site on bottom row is connected to any site on top row.

Dynamic-connectivity solution to estimate percolation threshold

brute-force algorithm: 2n find queries

open site

blocked site

n = 5 top row

bottom row

Clever trick. Introduce 2 virtual sites (and edges to top and bottom).

・Percolates iff virtual top site is connected to virtual bottom site.

109

Dynamic-connectivity solution to estimate percolation threshold

virtual top site

virtual bottom site

more efficient algorithm: only 1 connected query

open site

blocked site

n = 5 top row

bottom row

Q. How to model opening a new site?

110

Dynamic-connectivity solution to estimate percolation threshold

open site

blocked site

n = 5

open this site

Q. How to model opening a new site?

A. Mark new site as open; add edge to any adjacent site that is open.

111

Dynamic-connectivity solution to estimate percolation threshold

open this site

open site

blocked site

n = 5

adds up to 4 edges

112

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

constant known only via simulation

Percolation threshold

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

n = 100

Steps to developing a usable algorithm.

・Model the problem.

・Find an algorithm to solve it.

・Correct? Fast enough? Fits in memory?

・If not, figure out why.

・Find a way to address the problem.

・Iterate until satisfied.

The scientific method.

Mathematical analysis.

113

Subtext of today’s lecture (and this course)

