COS 226, SPRING 2016

ALGORITHMS
AND
DATA STRUCTURES

ARVIND NARAYANAN

L B PRINCETON
UNIVERSITY

http://www.princeton.edu/~co0s226

COS 226 course overview

What is COS 226?
« Intermediate-level survey course.
« Programming and problem solving, with applications.
* Algorithm: method for solving a problem.
« Data structure: method to store information.

data structures and algorithms

data types stack, queue, bag, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts
searching BST, red-black BST, hash table

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, tries, data compression
advanced B-tree, kd-tree, suffix array, maxflow

Why study algorithms?
‘Tneupsnvt - —_—
——— If Algorithms Know All, Ho Y
e » How Much s
Can an Algorithm Hire Better Than a Human? - ch Should Humans Help?
— ALGORITHMS TARE
Algorithm Th - WOORITHNS TARE coNy .
et 0% Who Might quin B WALL STREEY ONTROL, o
::w_ N) o Leave o Stay
s algorithms 10T
Prisons turn t<€ OCOZE;‘{‘:“ g ‘) <
deciding who t0 P ’ Can maths find you |nve? eHarmony
o = . @ T
e EUCESTE love algorithm This Alg

Better T°r|thm Knows o,

v 5 han Y
d ou
wiowmedaing ¥ Frienglg pa r Facebooi

claim to have

The Algorithm Economy Heads To Amazon
oarny creton o

=] ¢ [v] s |5]o =]r |

Bitcomand he iy IS
% Currency Revolution WALLSTR

EETJOURNAL = : recn

For all bitcoin's growing pains, it repres
money and global finance.

TECHNOLOGY

At UPS, the Algorithm Is the Driver

urn right, tun left, turn right: inside Orion, the 10-year effort to squeeze ever penny
3 2 gl
vear effort to sq v
¥y penny

k4
BY STEVEN ROSENBUSH and LAURA STEVENS

Feb. 16,2015 8:28 prm. £7 87 comments

Why study algorithms?

They may unlock the secrets of life and of the universe.

“ Computer models mirroring real life have become crucial for most
advances made in chemistry today.... Today the computer is just as

important a tool for chemists as the test tube. ’

— Royal Swedish Academy of Sciences — £L_3n
(S
(Nobel Prize in Chemistry 2013) 7/

)

Martin Karplus, Michael Levitt, and Arieh Warshel

Why study algorithms? Why study algorithms?

To solve problems that could not otherwise be addressed. Old roots, new opportunities.
« Study of algorithms dates at least to Euclid.

» Named after Muhammad ibn Masa al-Khwarizmi.
* Formalized by Church and Turing in 1930s.
» Some important algorithms were discovered

by undergraduates in a course like this!

| | IIII I II
8 9 $ 8838888388
http://www.youtube.com/watch?v=ua7YIN4elL_w "
5
Why study algorithms? Why study algorithms?
For intellectual stimulation. For fun and profit. Cisco SYSTEMS

1 oo

S

“ For me, great algorithms are the poetry of computation. Just n,

like verse, they can be terse, allusive, dense, and even mysterious. Go gle

But once unlocked, they cast a brilliant new light on some

4
%
3
-
3

aspect of computing. ” — Francis Sullivan

DEAR MYSTERY ALGORITHM THAT HOGGED GLOBAL
FINANCIAL TRADING LAST WEEK: WHAT DO YOU WANT?
ON FRIDAY, A SINGLE MYSTERIOUS PROGRAM WAS RESPONSIBLE FOR 4 PERCENT
OF AL STOCK QUOTE TRAFFIC AND SUCKED UP 10 PERCENT OF THE NASDAQ'S
TRADING BANDWIDTH. THEN IT DISAPPEARED.

s . ey

tlantic *reyts)," usq
by 1 vgfrb- 11.b, §

B(s, Void 0); 1 p a Plicats
<bas a.splice(b, 1);&1-:;:':1\ %)
@.replace(RegExp(",", "g"), * N
B) { for (varc =9, d=0d¢
&% c++; } return c; } function
_1' d = 0;d < a.length;ds) { ¥

- h RSA
Morgan Stanley NETELIX Adobe m
ak; } } return c; } fun
" 1

DEShaw&Co ORACLE (F\\
b= "-" == .m

NotExen he beople Who YasEHoO! amazon Microsoft » ¢ x A R

Know How They Work

Why study algorithms? Resources (web)

« Their impact is broad and far-reaching. Google s 226 n

« They may unlock the secrets of life and of the universe.
« To solve problems that could not otherwise be addressed. Al Shopping News Videos Maps More~ Search tools el

+ Old roots, new opportunities. About 34,700,000 resuls (0.32 seconds)
» To become a proficient programmer.
For intellectual stimulation. ¢

« For fun and profit. 0.98111135433

Rad x! () % AC
Why study anything else? v sin n 7 8 0 2
n cos log 4 5 6 x
e tan v 1 2 3 -
Ans EXP X) : ﬂ .
More info

http://www.princeton.edu/~c0s226

9
Resources (web) Precepts
Discussion, problem-solving, background for assignments.
[T e roow T person | ormce | vows |
- L01 MW McCosh Arvind Sherrerd Wed
HH 11-12:20pm 10 Narayan 308 2-4pm
Google 22608
L2 Mw Jadwin Andy 221 Nassau St. Mon
11-12:20pm A10 Guna Room 103 1:00-3:00pm
Al Maps Images Shopping News Morev Searchtools Ee - e s = =
G 9-9:50am 108 Ginsburg t Room 205 12:30-2:30pm
About 34,700,000 results (0.29 seconds) P02 ™ Friend Shivam 3'&““’ 3rd Floor Tue
10-10:50am 108 Agarwal mmon Area 5-7pm
) . ! A
COS 226, Spring 2016: Course Information oA o i e D‘;fa o
www.princeton.edu/~c0s226/ ¥ Princeton University B o
Princeton COS 226: Data Structures and Algorithms. o ™ Friend Maia cs Toe
11-11:50am 108 Ginsburg t Room 205 12:30-2:30pm
Lectures Assignments e e Ming-Yee ey o
Once the lecture moves above the Below are links to the programming PO3A . 11:50am 100 Teang TBA 8-10pm
"Lectures below have not yet .. assignments. For .. - s . S "
(RES 12:30pm-1:20pm :‘OG Caﬂ‘;n Cscn:lmm Are;or 4—60"
Exams Exercises -S0pm-1:20 o
EXAMS. Midterm exam. Here is some There is one set of exercises o5 ™ Friend sergy cs Sun
information about the associated with each lecture (so 1:309m-2:200m 12 Posovych 241 (font) 4:30-6:300m
More results from princeton.edu » POS o ; F:‘;fd é: :: . 22;:0?:’:5’ vuo?;upm
Po7 F Friend Andy 221 Nassau St. Mon
11-11:50am 108 Guna t Room 103 1:00-3:00pm
B F Friend Harry cs Tues
11-11:50am 109 Kalodner 241 (front) 3-5pm
PO M 221 Nassau St. Andy 221 Nassau St. Mon
11:00-11:50pm Conference room Guna Room 103 1:00-3:00pm

http:/ /www.princeton.edu/~c0s226 + co-lead preceptors

Coursework and grading

Programming assignments. 45%

« Due at 11pm on Tuesdays via electronic submission.

« Collaboration/lateness policies: see web.

Exercises. 10%

« Due at 11pm on Sundays via Blackboard.
« Collaboration/lateness policies: see web.

Exams. 15% + 25%

« Midterm (in class on Wednesday, March 11).
« Final (to be scheduled by Registrar).

Participation. 5%

» Attend and participate in precept/lecture.

« Answer questions on Piazza.

Programming
Assignments

Midterm
Exam

i< icker

Required device for lecture.
« Any hardware version of i»clicker.
« Use default frequency AA.
« Available at Labyrinth Books ($25).
* You must register your irclicker in Blackboard.
(sorry, insufficient WiFi in this room to support irclicker GO)

save serial number
to maintain resale value

We’ll start using them on Wednesday.

Electronic devices: Permitted, but only to enhance lecture.

no

no no

Resources (textbook)

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,
Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

4th edition (2011)

Available in hardcover and Kindle.
» Online: Amazon ($60 hardcover, $50 Kindle, $20 rent), ...
« Brick-and-mortar: Labyrinth Books (122 Nassau St.).
« On reserve: Engineering library.

Resources (web)

Course content.

« Course info.

« Lecture slides.

 Flipped lectures.

e Programming assignments.
Exercises.
« Exam archive.

ALcorrThis, 4TH EpiTion

essential Information that

Booksite.
« Brief summary of content.
« Download code from book.

every serious programmer
needs to know about
algorithms and data structures

Algorithms

e APIs and Javadoc.

4 Grapns

& comoxt

http:/ /algs4.cs.princeton.edu

Resources (people)

Piazza discussion forum.

« Low latency, low bandwidth.

« Mark SOIUtlon_revealmg questions http:/ /piazza.com/princeton/spring2015/cos226
as private.

Office hours.
« High bandwidth, high latency.
» See web for schedule.

Computing laboratory.
* Undergrad lab TAs.
 For help with debugging.
» See web for schedule.

http:/ /labta.cs.princeton.edu

What's ahead?

Today. Attend traditional lecture (everyone).
Wednesday. Attend traditional/flipped lecture.
Thursday/Friday. Attend precept (everyone).

FORi=1toN
Sunday: two sets of exercises due.
Monday: traditional/flipped lecture.
Tuesday: programming assignment due.
Wednesday: traditional/flipped lecture.
Thursday/Friday: precept.

protip: start early

Q+A

Not registered? Go to any precept this week.
Change precept? Use TigerHub.
All possible precepts closed? See Colleen Kenny-McGinley in CS 210.

Haven't taken COS 1267 See COS placement officer.
Placed out of COS 1267 Review Sections 1.1-1.2 of Algorithms 4/e.

L

Even the genius asks

questions.

Qi

AlgOI’ltthlS ROBERT SEDGEWICK | KEVIN WAYNE Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

model the
problem

i

1.5 UNION-FIND

. .. design an t’yagal.
» dynamic-connectivity problem @or@/— n

» quick find

understand
why not

» quick union

Algorithms

TR » improvements

correct?
efficient?

» applications
ROBERT SEDGEWICK | KEVIN WAYNE pp no

http://algs4.cs.princeton.edu

solve the
problem

Dynamic-connectivity problem

Given a set of N elements, support two operations:
« Connection command: directly connect two elements with an edge.
« Connection query: is there a path connecting two elements?

1.5 UNION-FIND
» dynamic-connectivity problem) (1) (2) © (4)

Algorithms are 8 and 9 connected? v o e o e e

are 5 and 7 connected? X

ROBERT SEDGEWICK | KEVIN WAYNE connect 5 and 0

http://algs4.cs.princeton.edu connect 7 and 2
connect 6 and 1

connect 1 and 0

are 5 and 7 connected? ¥

A larger connectivity example

Q. Is there a path connecting elements p and ¢ ?

AN

finding the path explicitly is a harder problem
(second half of the course)

S

fnhesEat s
i i

A. Yes.

Modeling the elements

Applications involve manipulating elements of all types.
« Pixels in a digital photo.
« Computers in a network.
 Friends in a social network.
» Transistors in a computer chip.
« Elements in a mathematical set.
« Variable names in a Fortran program.
« Metallic sites in a composite system.

When programming, convenient to name elements O ton - 1.
« Use integers as array index.
« Suppress details not relevant to union-find.

Later in the course:
how to translate from names to integers

Algorithms in nature

Slime mold in a maze, with food placed at the start and end points

Modeling the connections

Connected component. Maximal set of elements that are mutually connected.

© Q) 9'9

® ® © Q)

{0} {1,4,53{2,3,6,71}

3 disjoint sets

(connected components)

Two core operations on disjoint sets

Union. Replace set p and ¢ with their union.
Find. In which set is element p?

union(2, 5) find(5) == find(6) v

{03 {1,453{2,3,6,71} {0r{1,2, 3, 45,6,71}

3 disjoint sets 2 disjoint sets

Modeling the dynamic-connectivity problem using union-find

Q. How to model the dynamic-connectivity problem using union-find?
A. Maintain disjoint sets that correspond to connected components.

» Connect elements p and q.

* Are elements p and ¢ connected?

union(2, 5) find(5) == find(6) v

{03y{1,4,53r{2,3,6,71}

3 disjoint sets 2 disjoint sets

connect 2 and 5 are 5 and 6 connected?

© O @ (® © Q) (>

® O © Q) ® ©) ©

3 connected components 2 connected components

{03r{1,2,3,45,6,7}

Union-find data type (API)

public class UF

. initialize union—find data structure
UF(int n)) . /i
with n singleton sets (0 ton—1)

. . . . merge sets containing
void union(int p, int q) ° °
elements p and q

. . . identifier for set containing
int find(int p) dentifier f ¢ 8
element p (Oton—1)

Relatively straightforward expression of problem statement in Java

Up next: two simple union-find algorithms

Difficulty:
« Number of elements » can be huge.
« Number of operations m can be huge.
« Union and find operations can be intermixed.

Data could come from large social network with billions of nodes

Dynamic-connectivity client

* Read in number of elements » from standard input.
« Repeat:
- read in pair of integers from standard input
- if they are not yet connected, connect them and print pair

public static void main(String[] args) % more tinyUF.txt
{ 10

int n = StdIn.readInt();

UF uf = new UF(n);

while (!StdIn.isEmpty())

N O oW S
R AU w

{

int p = StdIn.readIntQ);

int q = StdIn.readInt();

if (uf.find(p) != uf.find(q))

{ 50
uf.union(p, q); 72 already connected
StdOut.printin(p + " " + q); 61 (don't print these)

}

}
}

1.5 UNION-FIND

» quick find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure.
« Integer array id[] of length n.
« Interpretation: id[p] identifies the set containing element p.

idll o 1 1 8 8 0 0 1 8 8

id[i] =0 id[i]l =1 id[i] =8
{0,563} {1,2,73} {3,4,8,91}

3 disjoint sets

Q. How to implement find(p)?
A. Easy, just return id[p].

Quickfind [eager approach]

Data structure.
« Integer array id[] of length n.
« Interpretation: id[p] identifies the set containing element p.

union(6, 1)

wo il s s s s
1 11

problem: many values can change

Q. How to implement union(p, q)?
A. Change all entries whose identifier equals id[p] to id[q].

Quick-find demo

union(4, 3)

© O o 00—

© & o0 o O

idl 0 1 2 3 M5 6 7 8 9
+ ot

Quick-find demo

union(3, 8)

® O

an o 1 2 | ¢ 7 8 o
t

0

Quick-find demo

union(6, 5)

©

& O
()
©

®
© @

I

idl 0 1 2 8 8 5 @MW 7 8 9
ot

Quick-find demo

union(9, 4)

© O o 66—

o ©® ©

id[]012885578n

* t

Quick-find demo

union(2, 1)

© oOo—0& &

@O ©

ian o 1ljs 8 55 7 8 8

Quick-find demo

connected(8, 9)

© oOo—0 66—

o ©® ©

idl] 0 1 1 8 8 5 5 7 8 8

true

Quick-find demo

connected(5, 0)

© oOo—=06 6

@O ©

Quick-find demo

union(5, 0)

Quick-find demo

union(7, 2)

id[]0118800-88

Quick-find demo

union(6, 1)

id[]-l 1 8 8-1 8 8
4 0

Quick-find demo

idgp 11 1 8 8 1 1 1 8 8

Quick-find: Java implementation

public class QuickFindUF
{
private int[] id;

public QuickFindUF(int n)

{
id = new int[n];
for (int i = 0; i < n; i++)
id[i] = 1;
}

public int find(int p)
{ return id[p]l; 1}

public void union(int p, int q)
{
int pid = id[p];
int qid = id[q]l;
for (int i = 0; i < id.length; i++)
if (id[i] == pid) id[i] = qid;

set id of each element to itself
=
(n array accesses)

return the id of p
pu E
(1 array access)

change all entries with id[p] to id[q]
pu E
(n+2 to 2n+2 array accesses)

Quickfind: Java implementation

public void union(int p, int q)

{
int pid = id[p];
int qid = id[ql;
for (int i = 0; i < id.length; i++)
if (id[i] == pid) id[i] = qid;
}

Q. What’s wrong with this instead?

public void union(int p, int q)
{
for (int i = 0; i < id.Tength; i++)
if (id[i] == id[p]) id[i] = id[al;

A. id[p] may change part-way through the loop!

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

R
n n 1

quick-find

number of array accesses (ignoring leading constant)

Union is too expensive. Processing a sequence of » union operations

on n elements takes more than »2 array accesses.

N

quadratic

Quadratic algorithms do not scale

Rough standard (for now).
. i hi
- 109 operations per second. QU (e 1)
« 109 words of main memory. /

e Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
« 109 union commands on 109 elements.
« Quick-find takes more than 10'8 operations.
* 30+ years of computer time!

Quadratic algorithms don't scale with technology.
« New computer may be 10x as fast.
« But, has 10x as much memory =
want to solve a problem that is 10x as big.
« With quadratic algorithm, takes 10x as long!

time

64T

327

size — 1K 2K 4K

quadratic

limit on
available time

linearithmic

linear

1.5 UNION-FIND

» quick union

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.
« Integer array parent[] of length n, where parent[i] is parent of i in tree.

« Interpretation: elements in a tree corresponding to a set.

o0 & ©® o6

019@@6678@

v €
parent of 3 is 4
root of 3 is 9

find(i) =9

{0r{13r4{2,3,4,9r{5, 63{7}r {81}

6 disjoint sets (6 trees)

Q. How to implement find(p) operation?
A. Return root of tree containing p.

Quick-union [lazy approach]

Data structure.
« Integer array parent[] of length n, where parent[i] is parent of i in tree.

« Interpretation: elements in a tree corresponding to a set.

ONO) ONONO)

wion35 0 1 9 4 9 6 6 7 8“

only one value changes

Q. How to implement union(p, q)?
A. Set parent of p's root to g's root.

Quick-union [lazy approach]

Data structure.
« Integer array parent[] of length n, where parent[i] is parent of i in tree.

« Interpretation: elements in a tree corresponding to a set.

© O ® ONO,

@ ® a

union3,55 0 1 9 4 9 6 6 7 8 9

Q. How to implement union(p, q)?
A. Set parent of p's root to q's root.

Quick-union demo

ONORONONORORONORONO)

Quick-union demo

union(4, 3)

ONORONONORORONORONO,

01 2 3 4 5 6 7 8 9

Quick-union demo

union(4, 3)

@@@ ONONONONO)
®

0O 1 2 3 3 5 6 7 8 9

Quick-union demo

@@@@@@@
®

Ol 2(3|3|[5 67|89

Quick-union demo

union(3, 8)

@@@@@@@
®

0O 1 2 3 3 5 6 7 8 9

Quick-union demo

union(3, 8)

ONONO O ONONONO)
®
®

|28 3[5|6|7|8|9

Quick-union demo

OB OB ORI OMIONIOBONO
®
®

0O 1 2 8 3 5 6 7 8 9

Quick-union demo

union(6, 5)

OB OB O OMIOMIONONO
Q)
®

01 2 8 3 5 6 7 8 9

Quick-union demo

union(6, 5)

@@@ @
©

0O 1 2 8 3 5 5 7 8 9

Quick-union demo

3 5 5 7 8 9

Quick-union demo

union(9, 4)

@@@@
Q)

Quick-union demo

union(9, 4)

@@@@
Q)

3 5 5 7 8 8

Quick-union demo

@@@@
Q)

0

1

2 8 3 5 5 7 8 8

Quick-union demo

union(2, 1)

@@@@
Q)

5 7 8 8

Quick-union demo

union(2, 1)

5 7 8 8

Quick-union demo

5 7 8 8

Quick-union demo

find(8) == find(9)

©

V@

Quick-union demo

find(5) == find(@)

B

Quick-union demo

union(5, 0)

R

Quick-union demo

union(5, 0)

I T

o1 1 8 3 0 5 7 8 8

Quick-union demo

=
CO—0
©)

o1 1 8 3 0 5 7 8 8

Quick-union demo

union(7, 2)

!

Quick-union demo

union(7, 2)

Quick-union demo

Quick-union demo

union(6, 1)

Quick-union demo

union(6, 1)

Quick-union demo

Quick-union demo

union(7, 3)

Quick-union demo

union(7, 3)

8 8

Quick-union demo

Quick-union: Java implementation

public class QuickUnionUF
private int[] parent;
public QuickUnionUF(int N)
parent = new int[N];
for (int i = 0; i < Nj i++)
parent[i] = i;
}
public int find(int p)

while (p != parent[p])

p = parent[pl;
return p;

}
public void union(int p, int q)
int i = find(p);

int j = find(q);
parent[i] = j;

—

set parent of each element to itself
(N array accesses)

chase parent pointers until reach root
(depth of p array accesses)

change root of p to point to root of q
(depth of p and q array accesses)

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

[on | e ||
n n 1

quick-find
quick-union n nt n <«—— worst case

1 includes cost of finding two roots

worst-case input

Quick-find defect. ®
« Union too expensive (more than » array accesses).
« Trees are flat, but too expensive to keep them flat.

Quick-union defect.

« Trees can get tall.
« Find too expensive (could be more than » array accesses). 0

union(0, 1)
union(0, 2)
union(0, 3)
union(0, 4)

1.5 UNION-FIND

Algorithms

» improvements

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Improvement 1: weighting

Weighted quick-union.
« Modify quick-union to avoid tall trees.
« Keep track of size of each tree (number of elements).
« Always link root of smaller tree to root of larger tree.

reasonable alternative:
union by height/rank

quick-union @ @
®/>rmrflur /
tree @

smaller larger
. tree tree
loreor ~—_ might put the ‘
arger larger tree lower

tree

weighted
® _always chooses the

\ better alternative /®
@ ®

larger smaller smaller larger

tree tree tree tree

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick union is:

parentf| 0 0 0 0 0 O 7 8 8 8 Q 6
OOO® OO
Q,

Which parent[] entry changes during union(2, 6)?
A. parent[0]
B. parent[2]
C. parent[6]

D. parent[8]

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick union is:

parent] 0 0 O O O O 7 8 8

Which parent[] entry changes during union(2, 6)?

parent[0]

parent[2]
parent[6]

A.
B.
C.
parent[8]

Quick-union vs. weighted quick-union

quick-union

gt

weighted

. e

average distance to root: 1.52

average distance to root: 5.1

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i]
to count number of elements in the tree rooted at 1, initially 1.

Find. Identical to quick-union.
Union. Modify quick-union to:

« Link root of smaller tree to root of larger tree.
« Update the size[] array.

int i = find(p);
int j = find(q);

if (i == j) return;
if (size[i] < size[j]) { parent[i] = j; size[j] += size[i]; }
else { parent[j] = i; size[i] += size[j]; }

Weighted quick-union analysis

Running time.
» Find: takes time proportional to depth of p.
« Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most Ign. <—

depth 3

n=10
depth(x) =3 < Ign

in computer science,
Ig means base-2 logarithm

Weighted quick-union analysis

Running time.
« Find: takes time proportional to depth of p.
« Union: takes constant time, given two roots.

in computer science,

Proposition. Depth of any node x is at most Ign. <= ¢ can base-2 logarithm

Pf. What causes the depth of element x to increase?

Increases by 1 when root of tree 7 containing x is linked to root of tree 7.
« The size of the tree containing x at least doubles since | 72| = |T1|.
* Size of tree containing x can double at most Ig n times. Why?

®© &N

Weighted quick-union analysis

Running time.
» Find: takes time proportional to depth of p.
« Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most Ig n.

n n 1

quick-find
quick-union n nt n
weighted QU n lognt log n

1 includes cost of finding two roots

e

log mean logarithm,
for some constant base

Summary

Key point. Weighted quick union makes it possible to solve problems that
could not otherwise be addressed.

algorithm worst-case time

quick-find mn
quick-union mn
weighted QU n+mlogn

order of growth for m union-find operations on a set of n elements

Ex. [10° unions and finds with 109 elements]
« WQUPC reduces time from 30 years to 6 seconds.
« Supercomputer won't help much; good algorithm enables solution.

1.5 UNION-FIND

Algorithms

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Union-find applications

« Percolation.
« Games (Go, Hex).
« Least common ancestor.
v Dynamic-connectivity problem.
« Equivalence of finite state automata.
» Hoshen-Kopelman algorithm in physics.
« Hindley-Milner polymorphic type inference.
« Kruskal's minimum spanning tree algorithm.
« Compiling equivalence statements in Fortran.
« Morphological attribute openings and closings.
« Matlab's bwlabe1() function in image processing.

Percolation

An abstract model for many physical systems:
» n-by-n grid of sites.
« Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

if and only if

percolates does not percolate
__ blocked

site

open —
site

open site connected to top v

n=8 1o open site connected to top

100

Percolation

An abstract model for many physical systems:
« n-by-n grid of sites.
« Each site is open with probability p (and blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

m

electricity material conductor insulated conducts
fluid flow material empty blocked porous
social interaction population person empty communicates

Likelihood of percolation

Depends on grid size n and site vacancy probability p.

] z
|
- -
u ¥
i - | =
" |]
L e =
n g m |
X .
u =
] " w " - ol
p low (0.4) p medium (0.6) p high (0.8)
does not percolate percolates? percolates
] L u
- -
| |
| |
g - u N
|]
w " || -:Il
L
T |
e
¥ |
| mm
Fu
] -
| |
" . L LR []

empty open site
(not connected to top)

full open site)
(connected to top) . blocked site

102

Percolation phase transition

When n is large, theory guarantees a sharp threshold p*.
« p>p*: almost certainly percolates.
« p <p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation
probability

| !
0 0.593 1

w100 site vacancy probability p

Monte Carlo simulation

« Initialize all sites in an n-by-n grid to be blocked.
« Declare random sites open until top connected to bottom.
» Vacancy percentage estimates p*.

* Repeat many times to get more accurate estimate.

135 open sites

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

104

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?
A. Model as a dynamic-connectivity problem problem and use union-find.

D open site
. blocked site

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?
« Create an element for each site, named 0 to n2—1.

n=35

CNONCRCONC
®6E 6606
®O®OO
CNONCRONC
@GOG

D open site
. blocked site

106

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?
« Create an element for each site, named 0 to n2—1.
« Add edge between two adjacent sites if they’re both open.

N

4 possible neighbors: left, right, top, bottom

50
T

!

. blocked site

Dynamic-connectivity solution to estimate percolation threshold

Q. How to check whether an n-by-n system percolates?
« Create an element for each site, named 0 to n2—1.
« Add edge between two adjacent sites if they both open.
« Percolates iff any site on bottom row is connected to any site on top row.

brute-force algorithm: 2n find queries

n=5 o—0 O @ toprow
e 0 o []
e 0 o
e 0 o

[]
® O —©@ botomrow

. blocked site

108

Dynamic-connectivity solution to estimate percolation threshold

Clever trick. Introduce 2 virtual sites (and edges to top and bottom).
« Percolates iff virtual top site is connected to virtual bottom site.

more efficient algorithm: only 1 connected query

virtual top site

—e o ® wrrow
o o o ®
e 0 o
e 06 o o
® O0—0 |otomrow
W oo virtual bottom site

. blocked site

109

Dynamic-connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

open this site

Dynamic-connectivity solution to estimate percolation threshold

Q. How to model opening a new site?
A. Mark new site as open; add edge to any adjacent site that is open.

adds up to 4 edges

open this site

. blocked site

=5 *—eo o [
e o o [
e 6 o
e 6 0 ©o
o 0690
D open site
. blocked site
10
Percolation threshold
Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.
constant known only via simulation
1-
percolation
probability
P
0 I I
0 0.593 1

site vacancy probability p

Fast algorithm enables accurate answer to scientific question.

12

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Correct? Fast enough? Fits in memory?
If not, figure out why.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

