
��� ��� ���� ��	
��
	�
 ��� ����	����

��	��� ���� � ������� ����
	� �����
�

���� ������� ����!����

�� "�#�����

������	
 ��	
�������� ����
� �
		
	�
	�	������� �
 � �����	���

��� ���	 ��	 �

��
	�
	�	������� �
 ��	 �	���

��� ���	
� ��	 �	� � ���� ��	 ����
� �	�� ����	� �
 ���� ��� 	��
�	� ���� ����	��
!��� ��	 �

��
	�
	�	������� �
 ��	 �	���

� � " �	�	�	���� ��	
����� �� ��	 ����
� �	�� �� �	
�
	�#��� �� ��	 ����
� �	�� ��

�����

$�� � �
 ��	 �	�� �	��� �#�� �	 ��	 ��	 ���	�	� ���� � %#	����� ��
�& ��
 �	

��� �����������	��

��������	
��
������������ �

��� "���	
 '()* �
 +",!*

�� �� �� �������	 �� �#��� � �����	�� �� ���	�
 ���	� ���	� -
����� �	���

��� �� �� �������	 ��
	���	 - ��	��

�� � �����	�� �� ���	�
 ���	�

���� �� �� �������	 �� �	���� � �
��
��� %#	#	 ����	�	������� ���� �	

�
�� ���	
��

���� ��� �	�	�	���� �� ���.� ����� ����
	� �	
 ��	
������ ��	
	 � ��

��	 �#��	
 �
 ����
���	 �	�� �� ��	 ���� ��
�#
	�

the idea is to insert P as the next leaf node and swim up maintaining PQ order invariant

(i) Yes. Here is why. There are two ways to build a max-heap
 a. insert N elements into a max-heap starting with an empty heap
 Each insert cost log N time and hence a total of N log N cost. So this method, called
 top-down cannot do this.
 b. Bottom up method. Starting with non-leaf nodes from bottom, sink each node while maintaining
 max-heap invariant. See example below.

starting with 10 (first non-leaf node circled), sink it while maintaining
the heap order property. So 10 would be exchanged with 54

now do the same for 15
finally for 5

Analysis: There are 2^k elements at level k. Based on our sink algorithm each one will sink at
most (h - k) where h = log N is the height of the tree. So to sink all of them we have to do the
following work.

(ii) The answer is NO. Because if it is possible, we can build a PQ in linear time and we can do
del-max in linear time and hence we have a sorting algorithm, that can sort in linear time. But
we showed that sorting has a lower bound of N log N

(iii) Similar to the argument in (ii), if we can do this, we can insert in 1/3 N log N and delete in
1/3 N log N and we have a sorting algorithm in 2/3 N log N, a violation of N log N lower bound

Randomized PQ solution

3. Dynamic median - we can design a solution (note that there can be other ways to do
this) as follows. We combine a minPQ, maxPQ and a single element as follows

In this construction, when we insert, we insert to either maxPQ or minPQ (log N
time). Note that median can tell us which way to go. Also note that we want to
maintain maxPQ and minPQ almost the same size, so we have the median at
the top or closer to it. All the elements in maxPQ are less or equal to median and
all elements in minPQ are greater than or equal to median. So this structure
allows all operations as expected
1. find median in constant time (middle or max of max-heap or min of min-heap
2. insert in log N, since we are inserting to one of the PQ's
3. remove in logN, since we are removing middle or max of max-heap or min of
min-heap and then adjusting the structure

/� $������%�� �	��	��& '
�
�

0	�
��	 ��� �� ��� ��	 �	����� �����	�� ��� �	�(������� �� �#
 ����
� �	�� ����	�
�	������� �
 ��	 1���2 "��� '�	 ��� �	�����
	�#
� � �	� ���� �� ���	� #��
�
���

��
����� ����� ��	
	������� �	��� ���� ��	 ����	
 �	���� ����
	������ ���� �	��

��� ����	�	�� ��	 �����	�� �	���� �� ������� ���	 ��� � +�
 ������ ���� �� ���
��

� ���#�
	��3��� ��	 #��	
����� �

���

��� ����	�	�� ��	 �	�(������� �	���� �� ���	 �
���
������ �� ���� � ��	
	 � ��
��	 �#��	
 �
 �	�� �� ��	 ���� ��
�#
	� +�
 ������ ���� �� ��� ��

� ���#�

	��3��� ��	 #��	
����� �

���

.� �&����� "����� 0	���� � ���� ���	 ���� �#���
�� ��	
�������� ��	
������ ���

�	

�
��� 	
	%#�
	�	����

��� ���	
� �� ����
����� ���	

� �
	���	���	��	���� �� ����
����� ���	�

