COS 226 Data Structures and Algorithms
Spring 2016 - Flipped Lecture Handout

Week 4 Flipped Activities

1. Max-Heap
Consider the following binary tree representation of a max-heap.

\ofgd Wy
AL

v
(a) Give the array representation of the heap. [:‘\J \41 X H (;\%\E/k F&&’F\l

(b) Insert th into the binary heap above, circlingny entries that changed.

Show the array representation of the heap.
the idea is to insert P as the next leaf node and swim up maintaining PQ order invariant

c elete-max operation in the binary heap at left results in the binary heap a
A delet tion in the bi h t left Its in the bi h t
right.

e b S o

the

keys
all possibilities.
ABCDEFG ﬁ IJKLMNOPQRSTUVWXY Z

(d) Answer TRUE or FALSE

i. It is possible to build a max-heap in linear time, given N random keys.
ii. It is possible to remove N items from a max-heap in linear time.

iii. It is possible to design a priority queue implementation that performs insert,
max, and delete-max in (1/3) x loga N compares per operation, where N is
the number of comparable keys in the data structure.
(i) Yes. Here is why. There are two ways to build a max-heap
a. insert N elements into a max-heap starting with an empty heap
Each insert cost log N time and hence a total of N log N cost. So this method, called
top-down cannot do this.
b. Bottom up method. Starting with non-leaf nodes from bottom, sink each node while maintaining
max-heap invariant. See example below.

Stayk wite Swne vandom SK (7S 15 Io—@

Uishel e ANC i & b iery et

(

—_—

the heap order property. So 10 would be exchanged with 54

/ 5
g@\ @ ‘s/ \54

6 starting with 10 (first non-leaf node circled), sink it while maintaining

S
\ R
'L/ \s w/ Q2 (0 g W\"o"ﬁ(C
\a cp‘gp ~
Analysis: There are 2"k elements at level k. Base each one will sink\a‘tés\\‘
most (h - k) where h = log N is the height of the have to do th

following work.

=\

) The answer is NO. Because if it is possible, we can build a PQ in linear time and we can do
del-max in linear time and hence we have a sorting algorithm, that can sort in linear time. But
we showed that sorting has a lower bound of N log N

ili) Similar to the argument in (ii), if we can do this, we can insert in 1/3 N log N and delete in

3 N log N and we have a sorting algorithm in 2/3 N log N, a violation of N log N lower bound

—

Randomized PQ solution

s sample(): Pick a random array index r (between 1 and N) and return the key a[r].

e delRandom() :
— Select: pick a random array index r (between 1 and N) and save away the key alr],
to be returned.
— Delete: exchange alr] and a[W] and decrement N.

= Restore heap order invartants: call sink(r) and swim(r) to fix up any heap order
violation at r. Note that a[N] in the original heap need not be the largest key, so
the call to swin(r) is necessary.

public Key sample() {
int r = 1 + StdRandom.uniform(N); // between 1 and N
return alr];

public Key delRandom() {
int r = 1 + StdRandom.uniform(N); // between 1 and N

Key key = alr]; [/ save away

exch(r, N-—-); [/ to make deleting easy
gink(r); // if a[N] was too big
swim(r); [/ if a[N] was too =small
a[li+1] = null; // avoid loitering

return key;

3. Dynamic median - we can design a solution (note that there can be other ways to do
his) as follows. We combine a minPQ, maxPQ and a single element as follows

In this construction, when we insert, we insert to either maxPQ or minPQ (log N
time). Note that median can tell us which way to go. Also note that we want to
maintain maxPQ and minPQ almost the same size, so we have the median at
the top or closer to it. All the elements in maxPQ are less or equal to median and
all elements in minPQ are greater than or equal to median. So this structure
allows all operations as expected

1. find median in constant time (middle or max of max-heap or min of min-heap
2. insertin log N, since we are inserting to one of the PQ's

3. remove in logN, since we are removing middle or max of max-heap or min of
min-heap and then adjusting the structure

2. Randomized priority queue
Describe how to add the methods sample() and delRandom() to our binary heap imple-
mentation of the MinP(@Q API. The two methods return a key that is chosen uniformly
at random among the remaining keys, with the latter method also removing that key.

public class MinPQ<Key extends Comparable<Key>>

MinPQ() create an empty priority quene

\\%“ 6 void insert(Key key) insert a key into the priority queue
\ $ Key min() return the smallest key
Key delMin() return and remove the smallest key
\ob\se
Key

sample() return a key that is chosen uniformly at random

return and remove a key that is chosen
uniformly at random

Key delRandom()

(a) Implement the sample() method in constant time and . For simplicity, do not
worry about resizing the underlying array.

(b) Implement the delRandom() method in time proportional to logN, where N is
the number of keys in the data structure. For simplicity, do not worry about
resizing the underlying array.

See Solukina Wbl

3. Dynamic Median Design a data type that supports the following operations and
performance requirements.

(a) insert in logarithmic time
(b) find-the-median in constant time

(¢) remove-the-median in logarithmic time.

@ U, QYL

