1. Sorting comparison: 0342687681
Selection and mergesort
Sorting equal keys: Ao A1 A2 Az A4 As As
a. Insertion Sort: Ao A1A2A3A4As5As
Selection Sort: As As A4 Az A2 A1 Ao
2-way Quick Sort: As As A4 Az A2 A1 Ao
3-way Quick Sort: Ao A1 A2 A3 A4 As As
top-down merge sort: Ao A1 A2 A3 A4 As As
bottom-up merge sort: Ao A1 A2 A3 A4 As As
4. (a) quicksort. (b) quicksort (c) Quicksort partitioning (but instead of using the rightmost element,
use the value 1 million, swapping all keys strictly greater than the value to the left).

-0 o0 T

5.

A If we want to sort a set of randomly ordered items such that we get the best
performance and we don't care about stability, we should use quicksort.

A or C. Again, we just want speed, but don't care about stability. If the Observations
are randomly ordered, quicksort is the winner. It was also reasonable to assume
that the unsorted Observation array was filled in roughly by timestamp, in which
case we'd want to use insertion sort to take advantage of the partially ordered
nature of the array.

B. In this case, we want speed and stability, and our objects are randomly ordered
with respect to importance. The winning sort here is mergesort.

C. Here we have an array that is almost perfectly ordered, so we should use
insertion sort.



