
COS 226 Data Structures and Algorithms
Spring 2016 - Flipped Lecture Handout

Week 1 Flipped Activities

1. Setting up and Testing Your Programming Enviornment

(a) Setup algs4 from percolation assignment page. Be sure to uninstall DrJava from
126 and reinstall.

(b) Copy the code Maze.java from flipped page, compile and run. This code uses
algs4 library WeightedQuickUnionUF.

(c) Try the code with different values of N including invalid values and edge cases.

2. Analysis of runtime
The runtime of an algorithm can be estimated using experimental values.

(a) Build a table of values, N versus runtime T using the Maze (given above). Con-
sider only the values greater than 1 second. Why is that we would not consider
times under 1 second?

(b) Assuming the Maze code runs in polynomial time, we will use the formula T =
aN b to estimate runtime T for a data set of size N . Compute the values of a and
b. Estimate the values of a and b up to two decimal places.

3. Social Network Connectivity Given a social network containing N members and a
log file containing M timestamps at which times pairs of members formed friendships,
design an algorithm to determine the earliest time at which all members are connected
(i.e., every member is a friend of a friend of a friend ... of a friend). Assume that the log
file is sorted by timestamp and that friendship is an equivalence relation. The running
time of your algorithm should be MlogN or better and use extra space proportional
to N.

1



4. Bitonic max An array is bitonic if it consists of a strictly increasing sequence of keys
immediately followed by a strictly decreasing sequence of keys. Design an algorithm
that determines the maximum key in a bitonic array of size N in time proportional to
log2N .

(a) State an algorithm that finds any element of an array in log2N time. What
assumptions are made about the array in your algorithm?

(b) How do we modify the algorithm (or design a new one) to solve the problem stated
above?

(c) Estimate the runtime of your algorithm as a function of N.

5. Runtime Analysis Consider the following three algorithms:

(a) Algorithm 1 solves problems of size N by recursively dividing them into 2 sub-
problems of size N/2 and combining the results in time c (where c is some con-
stant).

(b) Algorithm 2 solves problems of size N by solving one sub-problem of size N/2 and
peforming some processing taking some constant time c.

(c) Algorithm 3 solves problems of size N by solving two sub-problems of size N/2
and performing a linear amount (i.e., cN where c is some constant) of extra work

For each algorithm, write down a recurrence relation showing how T(N), the running
time on an instance of size N, depends on the running time of a smaller instance. Solve
T (N) to obtain a closed formula.

Algorithm 1: T (N) =

Algorithm 2: T (N) =

Algorithm 3: T (N) =

2



6. Memory Analysis

Suppose that a Java library NodeList is implemented using an array of Nodes.

public class NodeList<Item> {

private Node<Item>[] list;

private int N; // number of items in the list

private class Node {

private int count;

private Item item; // the item

private Node next, prev; // the next and previous nodes

}

...

}

Using the 64-bit memory cost model from the textbook, how much memory (in bytes)
does a Node object use and how much does a LinkedList object use to store N items?
Do not include the memory for the items themselves but do include the memory for
the references to them.

(a) Memory of a node

(b) Memory of a LinkedList with N nodes.

3



7. Percolation Assignment

The first programming assigment is to write a program to estimate the value of the
percolation threshold via Monte Carlo simulation.

(a) What is percolation and how can Union-Find be used to simulate a percolating
system?

(b) One of the expensive operations in percolation assignment is to see if a bottom
site is connected to the top site. Suggest a way to this efficiently.

(c) Study the methods to be implemented in the Percolation class

public class Percolation {

public Percolation(int N)

public void open(int row, int col)

public boolean isOpen(int row, int col)

public boolean isFull(int row, int col)

public int numberOfOpenSites()

public boolean percolates()

}

(d) WeightedQuickUnionUF is a given class. What is the runtime complexity of
WeightedQuickUnionUF methods, union and find?

(e) Discuss the assignment deliverables, Percolation.java and PercolationStats.java
and readme.txt files. More specifically discuss readme.txt

4


