
Princeton University
COS 217: Introduction to Programming Systems

GDB Tutorial and Reference
for x86-64 Assembly Language

Part 1: Tutorial

Motivation

Suppose you're developing the power.s program. Further suppose that the program
assembles and links cleanly, but is producing incorrect results at runtime. What can you
do to debug the program?

One approach is temporarily to insert calls of printf(...) throughout the code to get
a sense of the flow of control and the values of variables at critical points. That's fine, but
often is inconvenient. It is especially inconvenient in assembly language: the calls of
printf() will change the values of registers, and thus may corrupt the very data that
you wish to view.

An alternative is to use gdb. gdb allows you to set breakpoints in your code, step
through your executing program one line at a time, examine the contents of registers and
memory at breakpoints, etc.

Building for gdb

To prepare to use gdb, build the program with gcc217 using the -g option:

$ gcc217 -g power.s -o power

Running GDB

The next step is to run gdb. You can run gdb directly from the shell. But it's much
handier to run it from within Emacs. So launch Emacs, with no command-line
arguments:

$ emacs

Now call the emacs gdb function via these keystrokes:

<Esc key> x gdb <Enter Key> power <Enter key>

At this point you are executing gdb from within Emacs. gdb is displaying its (gdb)
prompt.

Page 1 of 5

Running Your Program

Issue the run command to run the program:

(gdb) run

gdb runs the program to completion, indicating that the "Program exited normally." (gdb
also displays the cryptic message "Missing separate debuginfos, use: debuginfo-install
glibc-2.12-1.166.el6_7.1.x86_64". That message is innocuous; ignore it.)

Incidentally and importantly, command-line arguments and file redirection can be
specified as part of the run command. For example the command run 1 2 3 runs the
program with command-line arguments 1, 2, and 3, and the command run < myfile
runs the program with its stdin redirected to myfile.

Using Breakpoints

Set a breakpoint near the beginning of the main() function using the break command:

(gdb) break main

Run the program:

(gdb) run

gdb pauses execution at the beginning of the main() function. It opens a second
window in which it displays your source code, with the about-to-be-executed line of code
highlighted.

Issue the continue command to tell command gdb to continue execution past the
breakpoint:

(gdb) continue

gdb continues past the breakpoint at the beginning of main(), and executes the
program to completion.

Stepping Through the Program

Run the program again:

(gdb) run

Execution pauses at the beginning of the main() function. Issue the next command to
execute the next instruction of your program:

Page 2 of 5

(gdb) next

Continue issuing the next command repeatedly until the next instruction to be executed
is call printf.

The step command is the same as the next command, except that it commands gdb to
step into a called function which you have defined. The step command will not cause
gdb to step into a standard C function. Incidentally, the stepi (step instruction)
command will cause gdb to step into any function, including a standard C function.

Examining Registers

Issue the info registers command to examine the contents of the registers:

(gdb) info registers

Issue the print command to examine the contents of any given register. Some
examples:

(gdb) print/d $rsi Print as a decimal integer the 8 bytes
 which are the contents of register RSI
(gdb) print/a $rdi Print as a hexadecimal address the 8 bytes
 which are the contents of register RDI
(gdb) print/d $eax Print as a decimal integer the 4 bytes
 which are the contents of register EAX

Note that you must precede the name of the register with $ rather than %.

Examining Memory

Issue the x command to examine the contents of memory at any given address. Some
examples:

(gdb) x/d &lBase Examine as a decimal integer the 4 bytes
 of memory at lBase (not really meaningful)
(gdb) x/gd &lBase Examine as a "giant" decimal integer the
 8 bytes of memory at lBase
(gdb) x/c &cResult Examine as a char the 1 byte of memory
 at cResult
(gdb) x/s &cResult Examine as a string the bytes in memory
 at cResult
(gdb) x/s $rdi Examine as a string the bytes of memory
 at the address contained in register RDI

Quitting GDB

Issue the quit command to quit gdb:

Page 3 of 5

(gdb) quit

Then, as usual, type:

<Ctrl-x> <Ctrl-c>

to exit emacs.

Command Abbreviations

The most commonly used gdb commands have one-letter abbreviations (r, b, c, n, s,
p). Also, pressing the Enter key without typing a command tells gdb to reissue the
previous command.

Page 4 of 5

Part 2: Reference
gcc217 ... -o program Assemble and link with debugging information
gdb [-d sourcefiledir] [-d sourcefiledir] ... program [corefile] Run gdb from a shell
ESC x gdb [-d sourcefiledir] [-d sourcefiledir] ... program [corefile] Run gdb from Emacs

Miscellaneous
quit Exit gdb.
directory [dir1] [dir2] ... Add directories dir1, dir2, ... to the list of directories searched for source files, or clear

the directory list.
help [cmd] Print a description command cmd

Running the Program
run [arg1],[arg2] … Run the program with command-line arguments arg1, arg2, ...
set args arg1 arg2 ... Set program's the command-line arguments to arg1, arg2, ...
show args Print the program's command-line arguments.

Using Breakpoints
info breakpoints Print a list of all breakpoints.
break label Set a breakpoint at the memory address denoted by label.
break fn Set a breakpoint at the third instruction of function fn.
condition bpnum expr Break at breakpoint bpnum only if expression expr is non-zero (TRUE).
commands [bpnum] cmd1 cmd2 ... Execute commands cmd1, cmd2, ... whenever breakpoint bpnum (or the current

breakpoint) is hit.
continue Continue executing the program.
kill Stop executing the program.
delete [bpnum1][,bpnum2]... Delete breakpoints bpnum1, bpnum2, ..., or all breakpoints.
clear [*addr] Clear the breakpoint at memory address addr, or the current breakpoint.
clear [fn] Clear the breakpoint at function fn, or the current breakpoint.
disable [bpnum1][,bpnum2]... Disable breakpoints bpnum1, bpnum2, ..., or all breakpoints.
enable [bpnum1][,bpnum2]... Enable breakpoints bpnum1, bpnum2, ..., or all breakpoints.

Stepping through the Program
next "Step over" the next instruction.
step "Step into" the next instruction.
finish "Step out" of the current function.

Examining Registers and Memory
info registers Print the contents of all registers.
print/f $reg Print the contents of register reg using format f. The format can be x (hexadecimal), d

(decimal), u (unsigned decimal), o (octal), a (address), c (character), or f (floating
point).

x/rsf addr Examine the contents of memory at address addr using repeat count r, size s, and
format f. The repeat count is optional; it defaults to 1. The size is optional; it can be b
(1 byte), h (2 bytes), w (4 bytes), or g (8 bytes). The format can be x (hexadecimal), d
(decimal), u (unsigned decimal), o (octal), a (address), c (character), f (floating point),
s (string), or i (instruction).

x/rsf $reg Examine the contents of memory at the address contained in register reg.
info display Print the display list.
display/f $reg At each break, print the contents of register reg using format f (as with a print

command).
display/si addr At each break, print the contents of memory at address addr using size s (as with an x

command).
display/ss addr At each break, print the string of size s that begins in memory at address addr (as with

an x command).
undisplay displaynum Remove displaynum from the display list

Examining the Call Stack
where Print the call stack.
backtrace Print the call stack.
frame Print the top of the call stack.
up Move the context toward the bottom of the call stack.
down Move the context toward the top of the call stack

Copyright © 2015 by Robert M. Dondero, Jr.

Page 5 of 5

	Princeton University
	COS 217: Introduction to Programming Systems
	GDB Tutorial and Reference
	for x86-64 Assembly Language

