The Design of C:
A Rational Reconstruction:
Part 2

Aarti Gupta

8 = =
— y -
P — &L
e - I ey L
T 1§ e Za
Oz o N | ot .
Lid = 5 S o
- Vg i
=Pt requrn
—
Ar“"’—
e
==1define e
Ink=e= 2 ~
- o bl = =
charis = =
= - — fe
L.J!"t = 101 =
gn o = §UN 9 =1 LIN
—] I(> iUy t_,'z;:
[by 5
- "'"I':'

Continued from previous lecture

-
Agenda

Data Types
Operators
Statements

/0O Facilities

-

Operators

What kinds of operators should C have?

Thought process
« Should handle typical operations
« Should handle bit-level programming ("bit twiddling")

« Should provide a mechanism for converting from one
type to another

Operators

Decisions
* Provide typical arithmetic operators: + - * / %
* Provide typical relational operators: == = < <= > >=
e Each evaluates to 0 => FALSE or 1 => TRUE
* Provide typical logical operators: ! && ||

« Each interprets 0 => FALSE, non-0 => TRUE

 Each evaluates to 0 => FALSE or 1 =>TRUE
* Provide bitwise operators: ~ & | * >> <<
* Provide a cast operator: (type)

Aside: Logical vs. Bitwise Ops

Logical NOT (!) vs. bitwise NOT (~)
! 1 (TRUE) => 0 (FALSE)

Decimal Binary
1 00000000 00000000 000O0OO0OOO OOOOOOO1

! 1 00000000 00000000 0000O0OOO0O OOOOOOOO

e~ 1 (TRUE) => -2 (TRUE)

Decimal Binary
1 00000000 00000000 000OOO0OOO OOOOOOO1

~1 11111111 11111111 11111111 11111110

Implication:
« Use logical NOT to control flow of logic
» Use bitwise NOT only when doing bit-level manipulation

Aside: Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)
-2 (TRUE) && 1 (TRUE) => 1 (TRUE)

Decimal Binary
2 00000000 OO0O0O0O0OO0O O0O0O0OO0OOO 0OOOOOO1O0

&& 1 00000000 00000000 00000000 0O0OOOOOO1

1 00000000 00000000 00000000 OOOOOOO1

«2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Decimal Binary
2 00000000 OO0O0O0O0OC0O0O O0O0O0OO0OOO 0OOOOOQO1O0

&1 00000000 00000000 OOOOOOOO OOOOOOO1

0O 00000000 00000000 00000000 00OOOOOOO

-
Aside: Logical vs. Bitwise Ops

Implication:
* Use logical AND to control flow of logic
» Use bitwise AND only when doing bit-level manipulation

Same for logical OR (]|) and bitwise OR (|)

Assignment Operator

What about assignment?

Thought process
* Must have a way to assign a value to a variable
* Many high-level languages provide an assignment
statement
* Would be more succinct to define an assignment
operator

« Performs assignment, and then evaluates to the
assigned value

* Allows assignment expression to appear within larger
expressions

-
Assignment Operator

Decisions
* Provide assignment operator: =

« Side effect: changes the value of a variable
« Evaluates to the new value of the variable

)

Assignment Operator Examples

Examples

i=20;
/* Side effect: assign 0 to i.
Evaluate to O.

/* Side effect: assign 0 to 1i.
Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) !'= EOF)
/* Read a character.
Side effect: assign that character to 1i.
Evaluate to that character.
Compare that character to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

j =1 =0; /* Assignment op has R to L associativity */

11

Special-Purpose Assignment Operators

Should C provide special-purpose assignment
operators?

Thought process
 The constructi = i + 1is common
* Moregenerally, i = i + nandi = i * nare
common
« Special-purpose assignment operators would make code
more compact

» Such operators would complicate the language and
compiler

12

Special-Purpose Assignment Operators

3y
&)
)

Decisions
* Provide special-purpose assignment operators:
Examples
i += J same as i = + 3
i /=9 same as i = / 3
i |=J same as i = | 3
i >>= j same as i = >>]

13

Special-Purpose Assignment Operators

CUIGET]

Y
(g s

Decisions (cont.)
* Provide increment and decrement operators: ++ --

* Prefix and postfix forms

Examples
(1) i = 5;
j = ++1i;
(2) i = 5; \
1= e What is the
(3) i = 5; value of i? Of j?

+4+i + ++i;

(4) 1 5;
i+t+ + i++;/

®

14

Sizeof Operator

How can programmers determine data sizes?

Thought process
* The sizes of most primitive types are unspecified

« Sometimes programmer must know sizes of primitive
types

* E.g. when allocating memory dynamically
* Hard code data sizes => program not portable

« C must provide a way to determine the size of a given
data type programmatically

15

-

Sizeof Operator

Decisions
* Provide a sizeof operator
* Applied at compile-time
* Operand can be a data type
* Operand can be an expression
« Compiler infers a data type

Examples, on CourselLab

e sizeof (int) =>4

 When i is a variable of type int...
e sizeof (i) =>4

e sizeof (1+1)
e sizeof (1++ * ++1 - 5)

What is the
value?

<)

-

Other Operators

What other operators should C have?

Decisions
* Function call operator
« Should mimic the familiar mathematical notation
e function(argl, arg2, ..)
Conditional operator: ?:
* The only ternary operator
» See King book
Sequence operator:
+ See King book
Pointer-related operators: & *
» Described later in the course
Structure-related operators: . ->

* Described later in the course

J

-

Operators Summary: C vs. Java

Java only
* >>>

* new
e instanceof

C only

- ->

right shift with zero fill

create an object
is left operand an object of class right operand?

structure member select
dereference

address of

sequence

compile-time size of

)

Operators Summary: C vs. Java ¢

Related to type boolean.

- Java: Relational and logical operators evaluate to type
boolean

« C: Relational and logical operators evaluate to type int
« Java: Logical operators take operands of type boolean

« C: Logical operators take operands of any primitive type
or memory address

)(
(ZErp CRAIGET)

(S0 NUTIRE

19

-
Agenda

Data Types
Operators
Statements

/0O Facilities

%

-

Sequence Statement

How should C implement sequence?

Decision
« Compound statement, alias block

{

statementl;
statement?2;

oy

-

Selection Statements

How should C implement selection?

Decisions
 if statement, for one-path, two-path decisions

if (expr) if (expr)
statementl; statementl;
else
statement?2;
0 => FALSE
non-0 => TRUE

2

Selection Statements

Decisions (cont.)

« switch and break statements, for multi-path
decisions on a single integerExpr

switch (integerExpr)
{ case integerLiterall:

break;"”””””””’<

case integerLiterall2:
break;

default:

What happens
if you forget
'~ break?

23

Repetition Statements

How should C implement repetition?

Decisions
- while statement; test at leading edge

while (expr)
statement;

« for statement; test at leading edge, increment at trailing edge

for (initialExpr; testExpr; incrementExpr)
statement;

« do..while statement; test at trailing edge

=E 0 => FALSE

statement; B
while (expr) ; non-0 => TRUE

24

Repetition Statements

Decisions (cont.)

“
(Gerp ~ o

(SUE HUMINE ®

« Cannot declare loop control variable in for statement

for (int 1 = 0; 1 < 10; i++)
/* Do something */

int i;

for (i = 0; i < 10; i++)
/* Do something */

lllegal in C

Legal in C

25

Other Control Statements

(S0 NUTIRE

What other control statements should C provide?

Decisions
* break statement (revisited)
» Breaks out of closest enclosing switch or repetition
statement
» continue statement
« Skips remainder of current loop iteration
» Continues with next loop iteration
* When used within for, still executes incrementExpr
» goto statement

« Jump to specified label

26

-

Declaring Variables

Should C require variable declarations?

Thought process:
» Declaring variables allows compiler to check spelling

* Declaring variables allows compiler to allocate memory
more efficiently

J

-

Declaring Variables

Decisions:
* Require variable declarations
 Provide declaration statement

* Programmer specifies type of variable (and other attributes too)

Examples
eint 1i;
- int i, j;

eint 1 = 5;

s const int 1 = 5; /* value of i cannot change */
e static int i; /* covered later in course */
e extern int i; /* covered later in course */

%)

Declaring Variables

Decisions (cont.):

 Declaration statements must appear before any other

kind of statement in compound statement

int 1i;
/* Non-declaration
stmts that use i. */

int j;
/* Non-declaration
stmts that use j. */

lllegal in C

{

int 1i;
int j;
/* Non-declaration

stmts that use 1i.

/* Non-declaration
stmts that use j.

*/

*/

Legal in C

29

-

Computing with Expressions

\

)‘
mmnﬁ

How should C implement computing with
expressions?

Decisions:

* Provide expression statement
expression ;

%/

Computing with Expressions

Examples
i=25;
/* Side effect: assign 5 to i.
Evaluate to 5. Discard the 5. */
j =i+ 1;

/* Side effect: assign 6 to j.
Evaluate to 6. Discard the 6. */

printf ("hello");
/* Side effect: print hello.
Evaluate to 5. Discard the 5. */

i+ 1;
/* Evaluate to 6. Discard the 6. */

5;
/* Evaluate to 5. Discard the 5. */

31

Statements Summary: C vs. Java

(S0 NUTIRE

Declaration statement:

« Java: Compile-time error to use a local variable before specifying its
value

* C: Run-time error to use a local variable before specifying its value

final and const
 Java: Has f£inal variables
 C: Has const variables

Expression statement

« Java: Only expressions that have a side effect can be made into
expression statements

« C: Any expression can be made into an expression statement

32

Statements Summary: C vs. Java

(S0 NUTIRE

Compound statement:

« Java: Declarations statements can be placed anywhere within
compound statement

« C: Declaration statements must appear before any other type of
statement within compound statement

if statement
« Java: Controlling expr must be of type boolean

« C: Controlling expr can be any primitive type or a memory address
(0 => FALSE, non-0 => TRUE)

while statement
« Java: Controlling expr must be of type boolean

« C: Controlling expr can be any primitive type or a memory address
(0 => FALSE, non-0 => TRUE)

33

Statements Summary: C vs. Java

(S0 NUTIRE

do..while statement
« Java: Controlling expr must be of type boolean

» C: Controlling expr can be of any primitive type or a memory
address (0 => FALSE, non-0 => TRUE)

for statement
« Java: Controlling expr must be of type boolean

* C: Controlling expr can be of any primitive type or a memory
address (0 => FALSE, non-0 => TRUE)

Loop control variable
« Java: Can declare loop control variable in initexpr
« C: Cannot declare loop control variable in initexpr

34

Statements Summary: C vs. Java

break statement

« Java: Also has “labeled break” statement
« C: Does not have “labeled break” statement

continue statement

« Java: Also has “labeled continue” statement
e C: Does not have “labeled continue” statement

goto statement

- Java: Not provided
« C: Provided (but don’ t use it!)

35

-
Agenda

Data Types
Operators
Statements

1/0 Facilities

)

-

/0 Facilities

Should C provide I/O facilities?
Thought process

* Unix provides the file abstraction

A file is a sequence of characters with an indication of
the current position

 Unix provides 3 standard files
« Standard input, standard output, standard error
* C should be able to use those files, and others
* 1/O facilities are complex
* C should be small/simple

"

-

/0 Facilities

Decisions
* Do not provide 1/O facilities in the language

* Instead provide 1/O facilities in standard library
 Constant. EOF

« Data type: FILE (described later in course)
« Variables: stdin, stdout, and stderr

* Functions: ...

%)

-

Reading Characters

What functions should C provide for reading
characters?

Thought process
* Need function to read a single character from stdin

e ... And indicate failure

»)

Reading Characters

Decisions
* Provide getchar () function
* Define getchar () to return EOF upon failure
« EOF Is a special non-character int
« Make return type of getchar () wider than char
 Make it int; that's the natural word size

Reminder
 There is no such thing as “the EOF character”

40

-
Writing Characters

What functions should C provide for writing
characters?

Thought process
* Need function to write a single character to stdout

Decisions
* Provide putchar () function
* Define putchar () to have int parameter
* For symmetry with getchar ()

Y

-

Reading Other Data Types

What functions should C provide for reading
data of other primitive types?

Thought process
* Must convert external form (sequence of character
codes) to internal form
* Could provide getshort (), getint (), getfloat (),
etc.

» Could provide parameterized function to read any
primitive type of data

2/

-

Reading Other Data Types

Decisions
* Provide scanf () function
« Can read any primitive type of data

 First parameter is a format string containing
conversion specifications

v/

Reading Other Data Types

|1| |2| |3|
| Y Y |
011000010110001001100011

What is this
ampersand?
scanf ("%d", {j_)/, Covered later
l in course.

00000000000000000000000001111011

l)
123

See King book for conversion specifications p

-
Writing Other Data Types

What functions should C provide for writing data
of other primitive types?

Thought process
* Must convert internal form to external form (sequence of
character codes)
* Could provide putshort (), putint (), putfloat()...

« Could provide parameterized function to write any
primitive type of data

v/

-
Writing Other Data Types

Decisions
* Provide print£ () function
« Can write any primitive type of data

* First parameter is a format string containing
conversion specifications

*/

Writing Other Data Types

123

!

00000000000000000000000001111011

l

printf ("%d", 1i);

|

011000010110001001100011

| A A J
11 12! '3

See King book for conversion specifications

47

-

Other I/O Facilities

What other 1/O functions should C provide?

Decisions
« fopen (): Open a stream
« fclose (): Close a stream
« fgetc () : Read a character from specified stream
« fputc (): Write a character to specified stream
« fgets (): Read a line/string from specified stream
« fputs (): Write a line/string to specified stream
« fscanf (): Read data from specified stream
« fprintf (): Write data to specified stream

Described in King book, and later in the course after covering

files, arrays, and strings

®

4)

Summary

C design decisions and the goals that affected them
» Data types
* Operators

e Statements
* |/O facilities

Knowing the design goals and how they affected the
design decisions can yield a rich understanding of C

Y/

Appendix: The Cast Operator

Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
« Compiler generates code
At run-time, code performs conversion

f [11000001110110110000000000000000 -27.375

i = (int)f

i (11111111111111111111111111100101 -27

50

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
« Compiler generates code
At run-time, code performs conversion

f [11000001110110110000000000000000 -27.375

d = (double)f

d 11000000001110110110000000000000 -27.375
00000000000000000000000000000000

51

-
Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
« Compiler generates code
At run-time, code performs conversion

i1 |00000000000000000000000000000010

c = (char)i

C (00000010 2

J

Appendix: The Cast Operator

(4) Cast between integer types of same size:

« Compiler generates no code

« Compiler views given bit-patternin a different way

i (11111111111111111111111111111110

u = (unsigned int)1i

u (11111111111111111111111111111110

4294967294

53

