
COS 126 –
Atomic Theory of Matter

1

Goal of the Assignment

n  Calculate Avogadro’s number
n  Using Einstein’s equations
n  Using fluorescent imaging

n  Input data
n  Sequence of images
n  Each image is a rectangle of pixels
n  Each pixel is either light or dark

n  Output
n  Estimate of Avogadro’s number

2

Overview – Four Classes

Blob

•  Maximal set of
connected light
pixels

BeadFinder

•  Find all blobs in a

JPEG image
•  List all the big blobs

(aka beads)

client
of

BeadTracker

•  Track beads from

one image to the
next

client
of

Avogadro

•  Data analysis to
estimate
Avogadro’s number
from the motion of
beads

command
line args

Pictures
(frames)

displacement
data

3

video
data

Boltzmann
Avogadro

Atomic Theory Overview

n  Brownian Motion
n  Random collision of molecules
n  Displacement over time fits a Gaussian

distribution

4
standard deviation

%

Atomic Theory Overview

n  Avogadro’s Number
n  Number of atoms needed to equal

substance’s atomic mass in grams
n  NA atoms of Carbon-12 = 12 grams
n  NA == 6.0221367 x 10+23

n  Can calculate from Brownian Motion
n  Variance of Gaussian distribution is a function

of resistance in water, number of molecules

5

Blob.java

n  API for representing
particles (blobs) in water
n  public Blob()

n  constructor

n  public void add(int i, int j)
n  add pixel at i,j to Blob

n  public int mass()
n  number of pixels in Blob

n  public double distanceTo(Blob b)
n  Euclidean distance between the center of

masses between Blobs

n  public String toString()
n  a string representation of this Blob

n  public static void main(String[] args)
n  unit tests all methods in the Blob data type

Center of mass,
and # of pixels

6

Blob.java
n  Center of mass

n  Only need three instance variables
n  Do not store the positions of every pixel in the blob

n  Two alternatives:
n  number of points, x-coordinate center of mass, and y-

coordinate center of mass) or
n  number of points, sum of x-coordinates, and sum of y-

coordinates) needed to compute the center-of-mass

Center of mass,
and # of pixels

Center is not
integer values!

7

Blob Challenges

n  Format numbers in a nice way
n  String.format("%2d (%8.4f, %8.4f)",

mass, cx, cy);
n  (Use same format in System.out.printf())
n  E.g., "%6.3f" -> _2.354
n  E.g., "%10.4e" -> 1.2535e-23

n  Thoroughly test
n  Create a simple main()
n  Test ALL methods

8

BeadFinder.java

n  Locate all blobs in a given image
n  And identify large blobs (called beads)

n  API
n  public BeadFinder(Picture picture, double threshold)

n  Calculate luminance (see Luminance.java, 3.1)
n  Include pixels with a luminance >= threshold

n  Find blobs with DFS (see Percolation.java, 2.4)
n  The hard part, next slide…

n  public Blob[] getBeads(int minSize)
n  Returns all beads with at least minSize pixels
n  Array must be of size equal to number of beads

9

BeadFinder - Depth First Search
n  Use boolean[][] array to mark visited
n  Traverse image pixel by pixel

n  Dark pixel
n  Mark as visited, continue

n  Light pixel
n  Create new blob, call DFS

n  DFS algorithm
n  Base case: simply return if

n  Pixel out-of-bounds
n  Pixel has been visited
n  Pixel is dark (and mark as visited)

n  Add pixel to current blob, mark as visited
n  Recursively visit up, down, left, and right neighbors

10

BeadFinder - Depth First Search
n  Use boolean[][] array to mark visited
n  Traverse image pixel by pixel

n  Dark pixel
n  Mark as visited, continue

n  Light pixel
n  Create new blob, call DFS

n  DFS algorithm
n  Base case: simply return if

n  Pixel out-of-bounds
n  Pixel has been visited
n  Pixel is dark (and mark as visited)

n  Add pixel to current blob, mark as visited
n  Recursively visit up, down, left, and right neighbors

11

BeadFinder - Depth First Search
n  Use boolean[][] array to mark visited
n  Traverse image pixel by pixel

n  Dark pixel
n  Mark as visited, continue

n  Light pixel
n  Create new blob, call DFS

n  DFS algorithm
n  Base case: simply return if

n  Pixel out-of-bounds
n  Pixel has been visited
n  Pixel is dark (and mark as visited)

n  Add pixel to current blob, mark as visited
n  Recursively visit up, down, left, and right neighbors

12

n  Use boolean[][] array to mark visited
n  Traverse image pixel by pixel

n  Dark pixel
n  Mark as visited, continue

n  Light pixel
n  Create new blob, call DFS

n  DFS algorithm
n  Base case: simply return if

n  Pixel out-of-bounds
n  Pixel has been visited
n  Pixel is dark (and mark as visited)

n  Add pixel to current blob, mark as visited
n  Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search

13

BeadFinder - Depth First Search
n  Use boolean[][] array to mark visited
n  Traverse image pixel by pixel

n  Dark pixel
n  Mark as visited, continue

n  Light pixel
n  Create new blob, call DFS

n  DFS algorithm
n  Base case: simply return if

n  Pixel out-of-bounds
n  Pixel has been visited
n  Pixel is dark (and mark as visited)

n  Add pixel to current blob, mark as visited
n  Recursively visit up, down, left, and right neighbors

14

n  Use boolean[][] array to mark visited
n  Traverse image pixel by pixel

n  Dark pixel
n  Mark as visited, continue

n  Light pixel
n  Create new blob, call DFS

n  DFS algorithm
n  Base case: simply return if

n  Pixel out-of-bounds
n  Pixel has been visited
n  Pixel is dark (and mark as visited)

n  Add pixel to current blob, mark as visited
n  Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search

15

BeadFinder Challenges

n  Data structure for the collection of blobs
n  Store them any way you like
n  But be aware of memory use and timing

16

BeadFinder Challenges

n  Data structure for the collection of blobs
n  Store them any way you like
n  But be aware of memory use and timing

n  Array of blobs?
n  But how big should the array be?

n  Linked list of blobs?
n  Memory efficient, but harder to implement
n  Avoid traversing whole list to add a blob!

n  Anything else?
17

BeadTracker.java

n  Track beads between
successive images

n  Single main function
n  Take in a series of images
n  Output distance traversed by

all beads for each time-step
n  For each bead found at time t+1,

find closest bead at time t and
calculate distance

n  Not the other way around!
n  Don’t include if distance > 25

pixels (new bead)

18

current (beads timet+1)

previous (beads timet)

BeadTracker Challenges

n  Reading multiple input files
n  java BeadTracker run_1/*.jpg
n  Expands files in alphabetical order
n  End up as args[0], args[1], …

n  Avoiding running out of memory
n  How?

n  Recompiling
n  Recompile if Blob or BeadFinder change

19

BeadTracker Challenges

n  Reading multiple input files
n  java BeadTracker run_1/*.jpg
n  Expands files in alphabetical order
n  End up as args[0], args[1], …

n  Avoiding running out of memory
n  Do not open all picture files at same time
n  Various ways to do this – see (1) and (2)

n  Recompiling
n  Recompile if Blob or BeadFinder change

20

BeadTracker Challenges

File
containing
frame time0

File
containing
frame time1

File
containing
frame time2

File
containing
frame timen

…
beads time0 beads time1

radial displacement0

21

n  (1) Avoid running out of memory

Only need two open at a
time

BeadTracker Challenges

File
containing
frame time0

File
containing
frame time1

File
containing
frame time2

File
containing
frame timen

…
beads time1

22

beads time2

radial displacement1

n  (1) Avoid running out of memory

Only need two open at a
time

No need to re-find beads – use the
beads time1 found in radial
displacement0 computation in the
computation of radial displacement1

BeadTracker Challenges

File
containing
frame time0

File
containing
frame time1

File
containing
frame time2

File
containing
frame timen

…
beads time0 beads time1

radial displacement0

23

beads time2

radial displacement1

n  (2) Avoid running out of memory

Avogadro.java

n  Analyze Brownian motion of all
calculated displacements
n  Lots of crazy formulas, all given, pretty

straightforward
n  Be careful about units in the math, convert

pixels to meters, etc.

n  Can test without the other parts working
n  We provide sample input files
n  Can work on it while waiting for help

24

Conclusion: Final Tips

n  Avoiding subtle bugs in BeadFinder
n  Double check what happens at corner

cases (e.g., at boundary pixels, or when
luminance == tau, or mass == cutoff)

n  Common errors in BeadFinder
n  NullPointerException
n  StackOverflowError (e.g., if no base case)
n  No output (need to add prints)

n  Look at checklist Q&A

25

Conclusion: Final Tips

n  Testing with a main()
n  Blob

n  Test all methods

n  BeadFinder, BeadTracker, and Avogadro
n  Must have a main() that can handle I/O

described in Testing section of checklist

n  Timing analysis
n  Look at feedback from earlier assignments
n  BeadTracker is time sink, so analyze that

n  How can you run 100 frames?
26

