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Today we talk about tensor decomposition, a general purpose tool for learning latent
variable models. Then we switch gears and talk about a recent improvement of the topic
modeling algorithm we saw in an earlier lecture.

0.1 Tensor decomposition

Tensor decomposition is the analog of spectral decomposition for tensors.
The nice thing about eigenvalues/eigenvectors is that they exist (ok, singular values/vec-

tors in case of nonsymmetric matrices) and you can efficiently compute them. For 𝑀 a
symmetric 𝑛× 𝑛 matrix, we can write

𝑀 =
∑

𝜆𝑖𝑢𝑖𝑢
𝑇
𝑖 .

A 3-D tensor 𝑀 is a 𝑛 × 𝑛 × 𝑛 array. Extending linear algebra to tensors is nontrivial.
Many problems regarding tensors are NP-hard, like rank (which is not straightforward to
define).

Today we are interested in tensors that we are guaranteed have a representation like
𝑀 =

∑
𝜆𝑖𝑢

⊗3
𝑖 , where the 𝑢𝑖 are orthogonal. We don’t know the 𝑢𝑖’s and are trying to

recover them. We can actually recover these similarly to the power method. (Recall that
the power method repeatedly sets 𝑥 ←[ 𝑀𝑥

‖𝑀𝑥‖2
; it gives the top eigenvector if there is a gap

between the top 2 eigenvalues. The running time is inversely proportional to this gap.)

Definition 0.1: The tensor-vector product (aka flattening by 𝑥) is defined as follows:
𝑀𝑥 is the matrix where

(𝑀𝑥)𝑖𝑗 =
∑
𝑘

𝑀𝑖𝑗𝑘𝑥𝑘.

Now
𝑀𝑥 =

∑
𝜆𝑖(𝑢𝑖 · 𝑥)𝑢⊗2

𝑖 .

This looks like a spectral decomposition: it takes the orthogonal directions 𝑢𝑖 and boosts
them by 𝜆𝑖(𝑢𝑖 · 𝑥). (Under the isomorphism 𝑉 ⊗ 𝑉 ∼= 𝑉 ⊗ 𝑉 *, 𝑢⊗2

𝑖 corresponds to 𝑢𝑖𝑢
𝑇
𝑖 .)
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Why does this work? From inspection, the eigenvalues of 𝑀𝑥 are 𝑢𝑖 · 𝑥 since the 𝑢𝑖’s are
orthonormal and spectral decomposition is unique. The 𝑀𝑥’s are approximately Gaussian,
and there is a good chance that 𝑀𝑥 has a top eigenvalue, with a significant gap to the next
eigenvalue.

0.1.1 Method of moments

In topic modeling, etc., what is really going on is that we are using the method of moments.
The general setup is that we sample

𝑥 ∼ 𝐷 := 𝐷(𝐴)

where 𝐴 is the matrix of hidden parameters; given observed 𝑋 we try to recover 𝐴. We can
consider the moments

E𝑋 = 𝑓1(𝐴)

E(𝑋⊗2) = 𝑓2(𝐴)

E(𝑋⊗3) = 𝑓3(𝐴)

...

Then we try to solve this nonlinear system of equations. A lot of machine learning can be
thought of in this way.

Mathematicians and statisticians have studied questions like: What distributions can we
identify from the third moments, or up to the 𝑘th moments?

Recall that in topic modelling, under the separability assumption, a document is sampled
from 𝐴 with 𝑤 ∈ Dir(𝛼). We considered

𝑋𝑋𝑇 = 𝐴E[𝑤𝑤𝑇 ]︸ ︷︷ ︸
𝑅

𝐴𝑇

and used separable matrix factorization. We were exactly using second moments to recover
the distribution.

See [AGH+14] for more on this framework.
Dictionary learning was not method of moments; we drew edges between 𝑋,𝑋 ′ when

| ⟨𝑋,𝑋 ′⟩ | ≥ 1
2
and used community detection on the resulting graph.

0.1.2 Example: Mixtures of identical spherical gaussians

Consider 𝑘 Gaussians 𝑁(𝜇𝑖, 𝜎
2) in 𝑛 dimensions (𝜇𝑖 ∈ R𝑛) where 𝜎2 is known. Let the

mixing weights 𝑤𝑖 be such that
∑𝑘

𝑖=1𝑤𝑖 = 1. To pick a sample, pick 𝑖 with probability 𝑤𝑖,
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and output a sample from 𝑁(𝜇𝑖, 𝜎
2). We have

E[𝑋] =
𝑘∑

𝑖=1

𝑤𝑖𝜇𝑖

E[𝑋⊗2] =
𝑘∑

𝑖=1

𝑤𝑖𝜇
⊗2
𝑖 + 𝜎2𝐼

E[𝑋⊗3] =
𝑘∑

𝑖=1

𝑤𝑖𝜇
⊗3
𝑖

Assume we shift coordinates so that E[𝑋] = 0, and that the 𝜇𝑖 are linearly independent. If
we can do a tensor decomposition of E[𝑋⊗3] then we will obtain the 𝜇𝑖 and weights 𝑤𝑖.
However, we can’t do tensor decomposition yet because the 𝜇𝑖 are in general not orthogonal.
We must first whiten the vectors.

0.1.3 Whitening

The idea of whitening is to change tensors of the form
∑

𝑤𝑖𝜇
⊗3
𝑖 to

∑
𝑤𝑖𝜈

⊗3
𝑖 where the 𝜈𝑖’s

are orthogonal. Letting 𝑈 = (𝜇1, . . . , 𝜇𝑛), we have

𝑃 =
𝑘∑

𝑖=1

𝑤𝑖𝜇
⊗2
𝑖 = 𝑈 diag(𝑤𝑖)𝑈

𝑇 .

(This is not the spectral decomposition, because 𝑈 is not orthogonal.) The spectral decom-
position is, say

𝑃 = 𝑉 𝐷𝑉 𝑇

where 𝑉 is orthogonal. Assume 𝑈, 𝑉 are full rank. We would like to find a matrix 𝐴 such
that the vectors 𝜈𝑖 := 𝐴

√
𝑤𝑖𝜇𝑖 are orthogonal, i.e., 𝐴𝑈 diag(

√
𝑤𝑖) are orthogonal. This is

equivalent to
[𝐴𝑈 diag(

√
𝑤𝑖)][diag(

√
𝑤𝑖)𝑈

𝑇𝐴𝑇 ] = 1 ⇐⇒ 𝐴𝑃𝐴𝑇 = 1.

Thus, take 𝐴 = 𝑊 𝑇 where 𝑊 = 𝑉 𝐷− 1
2 . Then

𝐴𝑃𝐴𝑇 = 𝐷− 1
2𝑉 (𝑉 𝐷𝑉 𝑇 )𝑉 𝑇𝐷− 1

2 = 𝐼

as needed.
In the Gaussian case, if we applied 𝑊 to

∑𝑘
𝑖=1𝑤𝑖𝜇

⊗3
𝑖 , we would get

∑
𝑤𝑖(𝑊

𝑇𝜇𝑖)
⊗3 =

∑ 1
√
𝑤𝑖

𝜈⊗3
𝑖 .

(Of course, we actually get the noisy versions of
∑𝑘

𝑖=1𝑤𝑖𝜇
⊗2
𝑖 ,

∑𝑘
𝑖=1 𝑤𝑖𝜇

⊗3
𝑖 , so if we want to

do proper analysis we’ll have to take error into account.)
(See also [BCMV13] for a somewhat different setting, overcomplete tensor decomposi-

tion.)
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0.2 SVD-based approaches for topic models (presentation by An-
drej Risteski)

We explain a paper by Bansal, Bhattacharyya, and Kannan [BBK], which uses SVD plus
some other tricks. They develop and prove a SVD-based algorithm that learns topic models
with 𝐿1 error under certain assumptions including the catch words assumption (a weakening
of the anchor words assumption).

We set up notation. Let 𝑘 be the number of topics and 𝑛 be the number of words. Let 𝐴
be the words×topics matrix, giving the distribution of words for each topic, and 𝑊 be the
topics×documents matrix. Let 𝑀 = 𝐴𝑊 . If 𝑊∙𝑖 is a column of 𝑊 , then ›𝑀∙𝑖 is generated
according to 𝑚 draws on the distribution given by 𝑀∙𝑖. (𝑚 is the number of words in each
document.)

The goal is to recover 𝐴 with 𝐿1 error. Previous works such as Arora et al. recovered
with 𝐿2 error. Note that 𝐿2 error ignores words with small frequency, and empirically, a lot
of words have small frequency. Moreover, columns are distributions so the natural norm is
𝐿1.

0.2.1 Assumptions

We make the following assumptions. See the paper for the precise parameters.

1. (Dominating topic) We assume there is a dominating topic in each document:

(a) for each document 𝑑 there exists a topic 𝑡(𝑑) such that 𝑊𝑡(𝑑),𝑑 > 𝛼. For all other
topics 𝑡′ ̸= 𝑡(𝑑), 𝑊𝑡′,𝑑 ≤ 𝛽, where 𝛽 − 𝛼 is large enough.

(b) (Each topic appears as a dominating topic enough times) For each topic 𝑡 there
are ≥ 𝜀0𝑤0𝑠 documents 𝑑 in which 𝑊𝑡,𝑑 ≥ 1− 𝛿.

2.

Definition 0.2: 𝑤 is a catch word for topic 𝑡 if for all 𝑡′ ̸= 𝑡, 𝐴𝑤𝑡′ ≤ 𝜌𝐴𝑤𝑡, and the
probability of appearing is not too small, 𝐴𝑤𝑡 ≥ 8

𝑚𝛿2𝛼
ln
Ä

20
𝜀𝑤0

ä
.

The catch words for 𝑡 occupy a significant proportion of the words for topic 𝑡

∑
𝑤 is catch word for topic 𝑡

𝐴𝑤𝑡 >
1

2
.

(You can replace 1
2
by 𝑝0, and get dependence on 𝑝0 in later parameters. For simplicity

we don’t do this. There is some absolute lower bound on 𝑝0.).

3. (Almost pure documents) There is a small fraction of almost pure documents. For all
𝑖, ≥ 𝜀0𝑤0𝐷 of the documents are such that 𝑊𝑡𝑑 > 1− 𝛿.

4. (No-local-minima assumption) Let 𝑝𝑗(𝜁, 𝑡) be the probability that 𝑡 is the dominant
topic in the document, word 𝑗 appears 𝜁 time, i.e., with proportion 𝜁

𝑚
. Then

𝑝𝑗(𝜁, 𝑡) > min(𝑝𝑗(𝜁 − 1, 𝑡), 𝑝𝑗(𝜁 + 1, 𝑡)).
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The motivation is that there are two possibilities: either the probability of the word
appearing 𝜁 times decays as 𝜁 gets larger (e.g. as a power law), or it’s a catch word,
and it keeps rising until some frequency, and then decays.

5. (Dominant admixture) The proportion of documents where topic 𝑖 is dominant is 𝐷
𝑘
,

where 𝑘 is the total number of documents.

0.2.2 Algorithm

The intuition is that topic models is like soft clustering, soft because each document doesn’t
belong to 1 cluster exclusively.

Intuitively, what is the obstacle? Suppose the frequency of a certain word in cluster 1 is
in [0, 𝜎] and in cluster 2 is [𝜇, 1], with the spread much larger in cluster 2. Then clustering
could split the second cluster into two.

This is solvable with the trick of thresholding before clustering. If 𝜇 is known, threshold
by 𝜇: if a coordinate is > 𝜇, then set it to be 1, and 0 otherwise. If you directly apply SVD,
you can handle less noise than if you threshold first.

Consider the following problem.

Problem 0.3: Given a random 𝑛× 𝑛 matrix 𝐴 where some 𝑚×𝑚 submatrix has P(𝐴𝑖𝑗 ≥
𝜇) ≥ 1

2
, and the other entries are 𝑁(0, 𝜎), find the submatrix (planted clique).

Solution. First consider the naive SVD solution.
The idea is that the spectral norm of the 𝑚 ×𝑚 matrix is significantly larger than the

spectral norm of the rest of the matrix.

1. Let 𝐶 be the subset (clique); let 1𝐶 be the characteristic vector. Then (assuming there
is not a significant negative contribution)

‖𝐴1𝐶‖
‖1𝐶‖

∼
»
𝐾(𝐾 𝜇

2
)2

√
𝐾

= 𝑂(𝐾𝜇)

2. The spectral norm of the random part is
√
𝑛𝜎.

SVD will work whenever 𝐾𝜇≫
√
𝑛𝜎,

𝜇

𝜎
≫
√
𝑛

𝑘
. (1)

Now consider thresholding first:

1. If 𝐴𝑖𝑗 > 𝜇 then set ‹𝐴𝑖𝑗 = 1; if 𝐴𝑖𝑗 < 𝜇 set ‹𝐴𝑖𝑗 = 0. In the planted clique the entries

are 1 with probability 1
2
; away from it entries are 1 with probability ∼ 𝑒−

𝜇2

𝑠𝜎2 .

2. Now we shift back so the mean on the non-clique part is 0. Set
˜̃
𝐴 = ‹𝐴− 𝑒−

𝜇2

2𝜎2 𝐽 , where
𝐽 the all 1’s matrix.
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The planted part has spectral norm
(

1√
𝑘

)2
𝑘2 = 𝑘. The random part has spectral norm

-
√
𝑛𝑒−

𝜇2

2𝜎2 .

Thus, after thresholding, we can solve the problem whenever 𝑘 ≫
√
𝑟𝑒−

𝜇2

2𝜎2 , i.e.

𝑒
𝜇2

𝜎2 ≫
√
𝑛

𝑘
.

which is a larger range than in (1).

The algorithm is the following (informally).

1. (Pick thresholds) For all words 𝑗, pick a threshold 𝜁𝑗 as follows. Take 𝜁𝑗 ∈ {0, 1, . . . ,𝑚},

𝜁𝑗 = argmax𝑗

®∣∣∣∣∣®𝑑 : fl𝑀𝑤𝑑 >
𝜁

𝑚

´∣∣∣∣∣ ≥ 𝐷

𝑘
and

∣∣∣∣∣
®
𝑑 : 𝑓𝑗𝑑 =

𝜁

𝑚

´∣∣∣∣∣ ≤ 𝜀
𝐷

𝑘

´
.

Then define the threshold matrix

𝑇𝑤𝑑 :=


√
𝜁𝑤, if fi𝐴𝑤𝑑 >

𝜁𝑤
𝑚

and 𝜁𝑤 is not too small

0, otherwise.

2. Now use the Swiss army knife [KK10].1

(a) Take 𝑇 , do a rank 𝑘-SVD, and produce 𝑇 (𝑘).

(b) Run a 2-approximation for 𝑘-means to get tentative cluster centers.

(c) Run Lloyd’s algorithm on columns 𝑆 of 𝐵, with starting points and centers above.

3. Determine catchwords. (See the paper for details.)

4. Determine the (1− 𝛿)-pure documents and get the topic-word mix.

A key point in the analysis is to show that the thresholding doesn’t break the clusters. We
need to use the non-local-min assumption.

Proposition 0.4 (Lemma A1 in [BBK]): If
∑

𝜁≥𝜁0 𝑝𝑗(𝜁, 𝑖) ≥ 𝜈 and
∑

𝜁≤𝜁0 𝑝𝑗(𝜁, 𝑖) ≥ 𝜈, then
𝑝𝑗(𝜁0, 𝑖) ≥ 𝜈

𝑚
.

Proof. Let 𝑓(𝜁) := 𝑝𝑗(𝜁, 𝑖). One of the following happens.

1. 𝑓(𝜁) ≥ 𝑓(𝜁 − 1) for all 𝑛 ≤ 𝜁𝑖 ≤ 𝜁0

2. 𝑓(𝜁 + 1) ≤ 𝑓(𝜁) for all 𝑚− 1 ≥ 𝜁 ≥ 𝜁0.

1The theorem says that the algorithm works when > (1 − 𝜀) of points satisfy the proximity condition.
𝑀𝑖 in cluster 𝑇𝑟 satisfies the proximity condition if for any 𝑠 ̸= 𝑟, the projection of 𝐴𝑖 onto the 𝜇𝑟-to-𝜇𝑠

line is at least Δ𝑟𝑠 closer to 𝜇𝑟 than 𝜇𝑠. Here Δ𝑟𝑠 = 𝑐𝑘
Ä

1√
𝑛𝑟+

√
𝑛𝑠

ä
‖𝑀 − 𝐶‖ where 𝐶 consists of the cluster

centers.
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Let’s assume (1). Then

𝜁0𝑝𝑗(𝜁0, 𝑖) ≥
∑
𝜁≥𝜁0

𝑝𝑗(𝜁, 𝑖) ≥ 𝜈 =⇒ 𝑝𝑗(𝜁0, 𝑖) ≥
𝜈

𝑚
.

The other case is similar.

Lemma 0.5 (Thresholding does not separate dominating topics, Lemma A3 in [BBK]):
With high probability, for a fixed word 𝑤 and topic 𝑡,

min(P(fi𝐴𝑤𝑑 ≤
𝜁𝑤
𝑚

; 𝑑 ∈ 𝑇𝑡),P(fi𝐴𝑤𝑑 >
𝜁𝑤
𝑚

, 𝑑 ∈ 𝑇𝑡) ≤ 𝑂(𝑚𝜀𝑤0).

where 𝑇𝑡 consists of the documents with dominant topic 𝑡.
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