
COS 598C: Detecting overlapping communities, and

theoretical frameworks for learning deep nets and dictionaries

Lecturer: Sanjeev Arora
Scribe: Max Simchowitz

April 8, 2015

Today we present some ideas for provable learning of deep nets and dictionaries, two
important (and related) models. The common thread is a simple algorithm for detecting
overlapping communities in networks. While community detection is typically thought of
as a way to discover structure in, say, large social networks, here we use as a general
purpose algorithmic tool to understand structure of latent variable models. The algorithm
for learning deep nets and dictionaries starts by identifying correlations among variables,
and represent these pairwise correlations using a graph. Then it uses community-finding to
uncover the underlying connection structure.

1 Detecting Overlapping Communities in Networks

Community detection has been well studied in planted settings where the communities are
disjoint. We discussed the stochastic block model in an earlier lecture. The concrete setting
was that we are given G = (V,E), where the vertices of V are partitioned into two sets S
and Sc, and edges within S and Sc are drawn with probability p, and between S and Sc are
drawn with probability q, such that p− q = Ω(1). Then, as long as min(S, Sc) = Ω(

√
|V |),

we can easily recover S and Sc using an SVD or semi-definite programming [6].
However, when communities overlap, this problem does not seem doable via SVD. To

recap the notation, let G = (V,E) be our graph, and lets assign users to (perhaps more
than one) communities C1, . . . , Cm. In the simplest setting - such as the one that arises in
the dictionary learning problem - (v1, v2) ∈ E if and only if there is a community Cj such
that v1 ∈ Cj and v2 ∈ Cj . In this case, we can identity Cj are subgraphs of G, all of which
are cliques, and G is precisely the union of these cliques. I don’t know of an algorithm to
find the cliques given the graph, if the graph is a union of arbitrary cliques.

Luckily, in the dictionary learning setting, the structure of G is not determined adver-
sarially. Instead, we assume that the vertices v ∈ V are distributed across the communities
fairly evenly, and that each v doesnt belong to too many communities (say, there are no
hubs). We formalize the generative process for G as follows:

Definition 1.1 (Planted Problem Corresponding to Overlaping Communities). Let G =
(V,E), where |V | = N . Suppose that there are m communities C1, . . . , Cm, and each vertex
is assigned to k communities uniformly at random. Finally, if u, v belong to the same

1

1.1 Notation Max Simchowitz

community, then Pr[(u, v) is an edge] = p ≥ 0.9. If they do not have any overlapping
community, then there are no edges.

Remark. If p = 1, then C1, . . . , Cm are cliques, and we are back in the clustering setting for
dictionary learning.

The nice thing about our generative process is that it admits for a local search heuristic,
as described in [2]. First, set T = kN/m, which is roughly the expected size of each
community. Now, if (u, v) are in a community Ci, then the expected number of edges
shared between them is about pT , so by a Chernoff bound, there are at least .9pT vertices
w connected to u and v with high probability.

On the otherhand, suppose (u, v) are not in the same community. Then, while they
are not necessarily joined by an edge, there may be vertices w such that (u,w) are in one
community, say Ci, and (u, v) are in another community, say Cj , giving rise to edges from
both u and v to w.

Now, how many such spurious edges are there? That, is, what is the probability that
edges occur between any two vertices, neglecting shared community structure? Well, there
are

(
N
2

)
ways to pick pairs of vertices, and the number of edges in the graph is no more than

the sum of the number of edges in one community, which concentrates around p
(
T
2

)
using

a standard Chernoff argument. Taking the union over all m communities, we see that the
probability of an edge between two vertices is no more than

p0 := pm

(
T

2

)(
N

2

)−1
(1.1)

Hence, the probability of a spurious edge between w and u and w and v is about p20, and thus
the number of spurious edges between (u,w) concentrats around p20N . Hence, to distinguish
between u and v sharing only spurious edges and sharing non-trivial edges due to common
community memberships, we want to ensure

p20N � pT (1.2)

This amounts to imposing the requirement that

N · T 4m2

N4
� T ⇐⇒ m� (N/T)3/2 ⇐⇒ m� (m/k)3/2 (1.3)

that most of the edges between u and v will be because they are in the same community.
Hence, we can greedily assign vertices to communities by considering the number of common
edges.

1.1 Notation

Given a vector x ∈ Rn, we will denote its i-th entry by x(i). We will denote the inner
product between two vectors x, y ∈ Rn by 〈x, y〉, or xT y interchangably. Given a matrix
A ∈ Rn×m, we denote its i-th column by Ai.

Page 2 of 11

Max Simchowitz

2 Neural Netowrks

Before expounding on the applications of the community finding algorithms described in [2],
we will take a brief detour into the world of neural networks: perhaps one of the most
popular tools in contemporary machine learning. At a very basic expert, neural networks
mimic the structure of physical brains. One abstraction for emulating a brain is to view a
network of biological neurons as large graphs, whose vertices are neurons and whose edges
are synapses (or other forms of connections). The state of such a neural network is described
by the potential with which each neuron is activited (and by other factors like current),
and the synapses determine how much potential is transferred from one neuron-node to the
next.

Motivated by both common implementation practices and theoretical feasibility, we will
consider study artificial neural networks which decompose in L-layers. We can therefore
describe the state of this network at a given time by an L-tuple of vectors x(1), . . . , x(L),
where the entries of the vector x(l) ∈ RNl record the potentials of a corresponding neuron
in the l-th layer. For example x(2)(1) is the potential of the first neuron in layer two. We
refer to x(1) as the top layer and x(L) as the bottom layer.

What makes neural networks fascinating is the way the potential vector x(l) in different
layers relate to one another. In biological neural tissue, electrical potential and chemical
signals are being exchanged continuously. In our setting, we instead imagine that, at discrete

interviews t = 1, . . . , T , nature draws top layer - potential vectors x
(1)
t . Then, the potentials

in each succesive layer x(l) is given by a noisy objection of a deterministic function of the

potentials x(l−1) in layer x
(1)
t .

We model this transfer of potentials as

x(l+1) = h(A(l)x(l)) (2.4)

where h is an (often nonlinear) function which which operates entrywise and identically on

each entry, and A(l) ∈ RN(l)×N(l+1)
is a matrix specifying how the potentials in one layer

feed into the next. Equivalently, we can think of A(l) as the adjacency matrix of a bipartite
graph G(l), whose edges represent the connection between neurals. In what follows, we will
interchange between identifying the vertices of G(l) with the entries of x(l), both of which
semantically correspond to the neurons in the l-th layer.

To lighten up the notation and facillitate exposition, the majority of these notes will
focus on learning networks with only two layers: one encoded by a sparse vector x, hidden
to the observer and drawn from a suitably behaved generative process, and a dense layer
encoded by a dense vector y, which can be observed. We will use G and A to refer to the
connection graph between x and y, and its adjacency matrix, respectively.

3 Dictionary Learning, Neural Nets, and Community Find-
ing

We can imagine that even the two layer problem is rather difficult for arbitrary, nonlinear
h. Thus, it makes sense to start off by considering the simpler case where h is just the
identity; that is Ax = y. This problem is known as Dictionary Learning, and the adjacency
matrix A is called the dictionary.

Page 3 of 11

Max Simchowitz

In the Dictionary Learning problem, we are given samples y1, . . . , yN samples of observed
potentials, and our goal is to reconstruct both A, and the hidden samples x1, . . . , xN so as
to minimize the error

min
A,{xi}

‖Axi − yi‖22 (3.5)

In general, this problem is extremeley over-determined. Indeed, if the x’s have dimension
greater than the y’s, then it is trivial to reconstruct A and xi for which Axi = yi exactly.
In order to make the problem both meaningful and tractable, we need to posit that the xi
have some additional structure. Here, we will assume that the samples x are sparse.

There are two motivations for recovering sparse xi. The first is empirical - biological
neurons tend to show sparse activation patterns. More broadly, sparsity is a rather intuitive
assumption for capturing a sense of “latent simplicity” or “hidden structure” in otherwise
very high dimensional data. The second motivation is that, assuming sparsity, we can
leverage insights from sparse recovery and compressed sensing, under certain conditions on
the dictionary matrix A. Recall that matrices that have low column inner products are
called incoherent:

Definition 3.1. Let A be a matrix with columns Ai, such that ‖Ai‖ = 1. We call A µ/
√
n

incoherent if |ATi Aj | ≤
µ√
n

Now, if we knew A exactly, and A is sufficiently incoherent, then we have the following
result

Theorem 3.1 (Compressed Sensing, Stated Loosely). Let A be a matrix with unit norm
columns, such that |〈Ai, Aj〉| ≤ 1

2k . Suppose given y = Ax where x is k-sparse. Then, x is
the unique k-sparse vector for which y = Ax. Hence, x can be recovered in polynomial time.

The guiding insight is that, for µ/
√
n incoherent dictionaries, ATA ≈ I, since the of

diagonals are bounded above by µ/
√
n. Note that this approximation is not necessarily a

great one in the spectral sense, since ATA− I can have n2−n entries of size Ω(µ/
√
n), and

thus ‖ATA− I‖ might be Ω(µ
√
n).

But looking only at the spectral norm does not take advantage of sparsity : Indeed,
‖ATA − I‖ = max‖z‖:1 z

T (ATA − I)z, and if ATA − I has entries all around µ/
√
n, this

maximimum will be attained for z∗ ≈ 1√
n

(1, . . . , 1). However, if we impose that z∗ is

k-sparse, things are a bit different. Define the seminorm ‖z‖0 :=
∑

i I(zi 6= 0}, and let
B0(k) := {z ∈ Rn : ‖z‖ ≤ 1, ‖z‖0 ≤ k}. It is rather easy to show that

sup
z∈B0(k)

zT (ATA− I)z ≤ kµ/
√
n (3.6)

This restriction to the subset of k=sparse vectors gives rise to the notion of the “Restricted
Isometry Property” in the compressed sensing literature [4]. Indeed, if kµ/

√
n < 1/2,

then A is effictively “invertible” for all 2k sparse vectors z, and if kµ/
√
n = o(1), then

〈Az,Az〉 = ‖z‖2 + zT (ATA − I)z ≈ ‖z‖2 for all k-sparse z. More precisely, we can prove
the following lemma:

Lemma 3.2. Let z1 and z2 be two k-sparse vectors, and let A have unit norm columns,
Then Then 〈Az1, Az2〉 = 〈z1, z2〉 ± 2kµ√

n
‖z1‖‖z2‖.

Page 4 of 11

3.1 Formal Models for Dictionary Learning Max Simchowitz

Proof. By relableing the columns of A and then entries of z1 and z2, we can imagine that
z1 and z2 are both supported on the indices [2k] := {1, . . . , 2k}. Hence,

〈Az1, Az2〉 =
∑
i∈[2k]

‖Ai‖2z1(i)z2(i) +
∑
i∈[2k]

∑
j 6=1∈[2k]

z1(i)z2(j)〈Ai, Aj〉 (3.7)

= 〈z1, z2〉+ E (3.8)

where E :=
∑

i∈[2k]
∑

j∈[2k] z1(i)z2(j)〈Ai, Aj〉.

|E| ≤
∑
i∈2k

∑
j 6=i∈[2k]

|z1(i)||z2(j)| · |〈Ai, Aj〉| (3.9)

≤
∑
i∈2k

∑
j∈[2k]

|z1(i)||z2(j)| · |〈Ai, Aj〉| (3.10)

≤ µ√
n

∑
i∈[2k]

∑
j∈
|z1(i)||z2(j)| ≤

µ√
n
‖w1w

T
2 ‖F (3.11)

where w1 ∈ R2k has w1(i) = |z1(i)| for all i ∈ [2k], and w2 is defined similarly for z2, and
‖ · ‖F denotes the Frobenius norm. Because w1w

T
2 is a 2k× 2k matrix, we have ‖w1w

T
2 ‖F ≤

2k‖w1w
T
2 ‖, where ‖ · ‖ denotes the spectral norm. But ‖w1w

T
2 ‖ = ‖w1‖‖w2‖ = ‖z1‖‖z2‖,

whence

|E| ≤ 2kµ√
n
‖z1‖‖z2‖ (3.12)

3.1 Formal Models for Dictionary Learning

To encourage sparsity, Olshausen and Field [5] designed an alternating gradient descent
algorithm to minimize the following objective:

min
N∑
i=1

|yi −Axi|2 +
N∑
i=1

penaltyK(x) (3.13)

As we remarked about, an unpenalized Dictionary learning is highly underdetermined.
Hense, Olshausen and Field introduced the penalties - for example, l1-regularization - to
encourage sparsity and ensure (or at least promote) model indentifiability [5]. In [3], Arora,
Ge, et al. describe an alternating minimization algorithm based on Olshausen and Field
to learning the objective in Equation 3.13. In these notes, we will restrict our attention
to the “overlapping community methods” to be described shortly. In either case, both
the alternating minimization algorithms in [3] and the overlapping community detection
methods from [2] will make use of roughly the same assumptions, which we formalize as
follows:

1. The dictionary A ∈ Rn×m has unit norm columns, and has µ√
n

-incoherent columns,

that is: |〈Ai, Aj〉| ≤ µ√
n

.

Page 5 of 11

3.1 Formal Models for Dictionary Learning Max Simchowitz

2. We are concerned with the regime m ≥ n, and we require that ‖A‖ = O(
√
m/
√
n).

3. Each x has exactly k nonzero coordinates, drawn uniformly from {1, . . . ,m} (this can
be relaxed somewhat, as in [3])

4. x each coordinate is independent conditioned on its support, and xi|xi 6= 0 is subgaus-
sian with O(1) variance proxy, and there is a constant C - universal across all i ∈ [m]
- such that |xi||xi 6= 0 ≥ C almost surely. For example, we can think of xi|xi 6= 0 as
being drawn uniformly from [1, 10], or from [−10,−1] ∪ [1, 10].

5. We will start off by assumping that xi ≥ 0 almost surely. An adpatation of the
arguments in this paper will also hold for the case where E[xi] = 0

Given samples y1 = Ax1 and y2 = Ax2, it follows from Lemma 3.2 that

〈y1, y2〉 = 〈x1, x2〉 ± ‖x1‖‖x2‖
kµ√
n

(3.14)

By subgaussian concentration, it holds with high probability that ‖x1‖‖x‖ = Õ(k), so as
long as k2µ/

√
n is roughly o(1), then

〈y1, y2〉 = 〈x1, x2〉 ± o(1) (3.15)

If we assume that x1 and x2 are entrywise non-negative, then

〈x1, x2〉 =
∑

i∈Supp(x1)∩Supp(x2)

x1(i)x2(i) (3.16)

≥ C|Supp(x1) ∩ Supp(x2)| (3.17)

≥ CI(Supp(x1) ∩ Supp(x2) 6= ∅) (3.18)

Hence, with high probability, it holds that 〈y1, y2〉 ≥ C/2 if and only iff x1 and x2 have a
nonzero entry in common. We will state this in an informal lemma:

Lemma 3.3. If k2µ/
√
n is roughly o(log n), then with very high probability 〈x1, x2〉 ≥ C/2

if and only x1 and x2 share a nonzero entry.

This observation allows us to transform the problem from an analytic one to a combina-
torial one. Indeed, given N observations y1, . . . , yN , let each observation yi correspond to
a vertex i in a graph G = (V,E). We draw an edge between the vertices i and j if and only
if 〈yi, yj〉 ≥ C/2. By the above discussion, it holds high probability that edges are drawn
between i and j if and only if xi and xj share a common non-zero entry. Taking a union
bound, the following claim holds:

Lemma 3.4. With high probability that G ' G̃, where G̃ is the graph over the vertices
i ∈ [N] with edges connected all indices i, j for which xi and xj have non-disjoint support

We now give a more intuitive way to characterize G̃: Let C1, . . . , Cm be sets defined so
that Cj := {i ∈ [N] : xi(j) 6= 0}. We will call the sets “communities”, in the sense that
all i ∈ Cj share a nonzero entry in common. By the assumption that there are exactly k
nonzero entries of each sample xi selected uniformly at random, each vertex i is assigned

Page 6 of 11

3.2 Reduction of Dictionary Learning to Community Detection Max Simchowitz

to exactly k communities Cj1 , . . . , Cjk . Moreover, it follows directly from the definition of
the sets Cj that xi and xj share a common nonzero if and only if they both lie in the same
community: G̃ is precisely the graph constructed by drawing edges between vertices which
belong to at least one of the same community. Hence, to recover the sparsity patterns of the
xi with high probability, Lemma 3.4 tells us that the graph G, whose edges are constructed
from the inner products of samples yi and yj , is precisely generated by the community
assignments of its vertices.

3.1.1 Mean Zero Case

If the entries of xi are mean zero, then the argument is a little different: indeed,∑
i∈Supp(x1)∩Supp(x2)

x1(i)x2(i) (3.19)

can have absolute value much smaller than C due to cancellations from the entries of x1 and
x2 having cancelling signs. However, with probability Ω(k2/m2), Supp(x1) and Supp(x2)
will overlap at at most one entry, so we can neglect these correlations if we are willing to
accept a small (but not as small as n−ω(1)) probability of missing an edge (which will also
not be independent of the common support of and x2 x1). On the other hand, we can
improve the bound in Lemma 3.2 due to cancellations. Indeed, we have

〈y1, y2〉 − 〈x1, x2〉 =
∑
i 6=j
〈Ai, Aj〉x1(i)x2(j) (3.20)

Using the bound |〈Ai, Aj〉| ≤ µ/
√
n, this term has mean zero and moment roughlyO(

√
kµ/
√
n)

due to cancellations. Hence, 〈y1, y2〉 = 〈x1, x2〉+Õ(
√
kµ/
√
n), so our error drops by roughly

a factor of
√
k.

3.2 Reduction of Dictionary Learning to Community Detection

Given our community detection algorithm, we have given a sktech of how to efficiently
recover the sparsity patterns of the latent samples xi. We show how to use this technique
to recover the dictionary A, folllowing [2]. Note that, once A has been retrieved, we can
use more standard techniques from sparse recovery to (approximately) recover the latent
signal vectors x.

The basic idea is that the j-th column of A, Aj , should roughly resembly the average of
all sampes yi for which the j-th entry is active: that is, yi = Axi where xi(j) ≥ 0. Thus, a
first first attempt at recovering A would be simply to compute the following average:

Aj :=
1

|Cj |
∑

i:yi∈Cj

yi (3.21)

Unfortunately, in the case were the xi have mean zero, we have E[yi] = E[Axi] = AE[xi] =
0, In the case where the xi have do not have mean zero, then we get a lot of spurious
contributions from the nonzero entries of the samples at indices not equal to j: that is,
yi = Ajxi(j) +

∑
j′ 6=j Aj′xi(j

′).

Page 7 of 11

3.2 Reduction of Dictionary Learning to Community Detection Max Simchowitz

A better idea is to instead look at the best rank 1 approximation to E[yyT] : y ∈ Cj .
For simplicity, we will first handle the mean zero case. Note first that, because the problem
is invariant to permutation of the columns of A, it suffices to prove an algorithm which
recovers A1, the column of A which corresponds to community C1. Our strategy will be to
compute the best rank-one approximation to the empirical covariance matrix of all samples
yi which have an active first column, that is yi ∈ C1. Let

M1 :=
1

#y : y ∈ C
∑
y∈C

[yyT] (3.22)

that is, the empirical average of all yyT for y ∈ C. First, lets show that M1 is a good
approximate of A1A

T
1 up to a constant factor:

M1 = E[x(1)2A1A
T
1] + E[

∑
i≥2

x(i)2AiA
T
i]

+ E[
∑
i≥2

x(i)x(j)(A1Ai +AiA1)] + E[
∑
i,j≥2

x(i)x(j)AiAj] + statistical error

≈ Θ(A1A
T
1) +O(

k

m

∑
i≥1

AiA
T
i) + Õ(k2/

√
N)

Here N is the number of samples used, the O(f) notation is means a quantity whose spectral
norm is bounded by Cf for some C > 0, and O(M) (resp Θ(M)) means a quantity which is
less than CM (resp less than CM and greater than cM) according to the cannonical ordering
� of the semidefinte cone . The first term comes from the fact that E[x(1)2|y ∈ C] = Θ(1),
the second term comes from the fact that E[x(i)2|y ∈ C] = O(k/m). Note that the second
error term is systemic - it does not depend on the number of samples used by the algorithm.

The remaining error term Õ(k2/
√
N) is statistical in nature, and comes from the de-

viation of all the terms from their exptation. It is easy to establish the Õ(k2/
√
n) by

conditioning on the very high probability even that all the xi are small, and then using
Chernoff bounds to finish up. The bound can be improved to Õ(k/

√
N), but this improved

bounded affects the sample complexity of the algorithm. On the other hand, the systemic
error of O(km

∑
iAiA

T
i) determines the conditions on k and m under which the best-rank-one

approximation algorithm accurately retrives the underlying dictionary.
First, we will use a standard assumption in the dictionary learning literature that

‖A‖ = O(
√
m/
√
n). Under this condition, it holds that ‖(km

∑
i≥2AiA

T
i)‖ = O(k/n).

We will assume that the number of samples is large enough that the statistical error is also
dominated by O(k/n). Thus, M1 ∝ A1A

T
1 + E, where E has norm O(k/n). N

Now let Â1 be the top eigenvector of M1. We can show that Â1 is a good estimate of A1

by appealing to Wedin’s Theorem, an elementary result from linear algebra, which bounds
the distance of the top eigenvector of a PSD matrix A to that of A+E, where E is a small
perturbation. Because A1 is the top eigenvecotr of A1A

T
1 , Wedin’s Theorem will help us

show that the top eigenvector of M1 should be close to A1 as well:

Theorem 3.5. Let v1 be the top eigenvector of PSD matrix A and let v2 be the top eigen-
vector of A+ E. Let θ be angle between v1 and v2. Then sin θ ≤ 2‖E‖

σ1(A)−σ2(A) .

Page 8 of 11

Max Simchowitz

As a corrolary, we get a clean bounded on the Euclidean distance between the (normalized)
top eigenvectors of A and A+ E

Corollary. Let A be a rank one matrix of norm 1 with top eigenvector v1, let v2 be the top
eigenvector of A+ E. Then as long as ‖E‖ = o(1) ‖v1 − v2‖ ≤

√
1/2, ‖v1 − v2‖ ≤ 2‖E‖

Proof. Because σ1(A1A
T
1) = 1, and σ2(A1A

T
1) = 0, we have that sin θ(v1, v2) ≤ 2‖E‖.

Because vT1 v2 = 1− ‖v1 − v2‖2, we have

sin θ(v1, v2) = sin arccos(vT1 v2) =
√

1− (vT1 v2)
2 =

√
2‖v1 − v2‖2 − ‖v1 − v2‖4(3.23)

=
√

2‖v1 − v2‖
√

1− ‖v1 − v2‖2 (3.24)

Because E = o(1), it follows that sin θ(v1, v2), and hence ‖v1 − v2‖, must be o(1) as well.
Hence, ‖v1 − v2‖ ≤

√
2‖E‖/

√
1− ‖v1 − v2‖2 ≤ 2‖E‖.

From this corrolary, it follows immediately that ‖Â1 − A1‖ ≤ O(k/n). Hence, given
enough (but still polynomially many) samples, we can recover easy the columns of A up to
an error of k/n.

4 Unsupervised learning of Deep Nets

Let’s return from the restricted setting of dictionary learning to the more general setting of
neural nets. Aside from their success, one of the major reasons for the popularity of deep
nets is that the last layer seems to capture “meaningful features”. For example, in vision
problems, the pixel-representations of an object learned by neural nets often represents the
shape of that object very closely. And, in many applications, one can train very effective
clasifiers (using, say, an SVM or Logistic Regression) on the features learning by the last
layer. In fact, if we train a multilayer neural network for a classification task - say, distin-
guishing between cats and dogs - and then retrain the last layer to learn a new task - say,
distinguish between birds and bees - without retraining the parameters of most of the hidden
layers, the retrained network is still remarkably succesful at its new classification task. This
suggest that the representations learned in the deeper layers of the neural network capture
most of the relevant information, or at least enough information to build effective classifiers.

This suggests that deep nets are capturing some inherent structure in the images them-
selves, raising hope that the hidden layers correspond to natural ”features” that could be
learnt from just unlabeled data. (By contrast, the recent successes involve leveraging large
amounts of labeled images.) Unsupervised training of deep nets is a holy grail of this area,
and major researchers in this area have tried to define a generative model corresponding
to deep nets. This quest is very much in the spirit of the discriminative-generative pairs
we discussed in an earlier lecture (eg naive bayes classifier is a generative analog of logistic
regression).

If we move from the descriminative perspective to the generative perspective, we might
wonder - what is the structure that neural nets can extract structure from the data? Let’s
now consider a two layer neural net whose top layer is encoded in a vector x and bottom
layer is encoded in a vector y.

Page 9 of 11

Max Simchowitz

Rather than imagining a linear map A which takes a sparse input x and maps it to a
dense y, we now imagine an encoding function E(·) which encodes a dense y as a sparse x.
In the linear case, we had that y = Ax, so that x ≈ AT y. In the general case, we model
x = E(y) = h(A′y + b), where b is an offset function and h(·) is a nonlinear map which
acts identically and independently on each coordinate, for example, h(·) can be the function
which returns the sign of the entries of its arguments. Again, we can imagine that eancy
entry of x and y are treated as vertices in a bipartite graph, and that A is the adjacency
matrix which captures the edge weights between the entries of x and y.

The hope is that we can now invert the encoding function E(·), and in fact perform the
inversion in the presence of noise. This motivates the following definition:

Definition 4.1 (Denoising Auto-Encoder). Give an adjacency matrix A, an autoencoder
consists of a pair of an encoding function of the form E(y) = h(A′y + b) and a decoding
function D(x) = h(Ax+ b′). The autoencoder is called denoising for a noise model ξ ∼ D
if the the decoding robust to noise in the sense that:

E(D(h) + ξ) = h with high probability (4.25)

and said to be weight tying if A′ = AT . Here D(h) + ξ is shorthand for D corrupted with
the noise vector ξ. This corruption might not necessarily be additive.

The following theorem states that, if the entrywise nonlinear function h(·) is the sign
function, and A is sufficiently sparse, then [1] show that the two layer neural network is in
fact a denoising autoencoder:

Theorem 4.1 (stated loosely). Consider a two layer neural network with sparse bi-partite
graph G with adjancey matrix A with edge weights drawn uniformly in [−1, 1]. Suppose
that the latent sample x are binary with support S. Finally, suppose that y = sign(Ax).
Then there is a b′ for which the pair E(·) and D(·) form an denoising autoencoder, where
E(·) = sign(AT y + b′).

In fact, we can learning the encoding/decoding function with high probability:

Theorem 4.2. Under some regularity assumptions, there is a polynomial time algorithm
to learn the encoding and decoding functions for a two layer neural with sparse edge weights
drawn uniformly in [−1, 1]

Proof. To preserve intuition, we assume that we have an unweighted bipartite graph which
is drawn unifromly from all d-regular bipartite graphs on vertex set given by the entries of
x and y. We assume that thare E(·) and D(·) are chosen with no thresholding function, so
that b = b′ = 0. We also assume that the xi are uniformly drawn, k-sparse binary vectors,
where x = ρn for some small ρ.

Let’s begin by learning the adjacency matrix A, or equivalently, the graph G. What
are the communities? They are subsets of nodes with a common neighbor. So what hap-
pens when two nodes have a common neighbor. If u, v have a common neighbor, then
Pr[u, vare1] ≥ ρ. So Pr[u, v are both 1] ≤ (pd)2. So if ρ � (ρd)2, we can recover the
communities with high probability.

Now lets describe how to recover the entries of samples x. The key intuitition is that,
if an entry of x, say x1 is active, then some number of its neighbors yi will be active as

Page 10 of 11

REFERENCES Max Simchowitz

well. Hence, we can recover x1 by determining if above a certain threshold of its neighboring
indicies y are 1. The guarantees behind these algorithm come from the following observation:
that uniformly drawn sparse bipartite graphs are expanders with high probability. Let’s be
more specific:

Let U denote the vertex set corresponding to the entries of x, and V the vertex set
corresponding to the entries if y. Given u ∈ U , let F (u) denote all of its neighbors in V .
Fiallly for some set S ⊂ U , let UF (u, S) be the set of unique neighbors of u with respect
to S: that is

UF (u, S) := {v ∈ V : v ∈ F (u), v /∈ F (S − {u})} (4.26)

It turns out that, for a randomly generated bipartite graph and sufficiently small set S,
then for every u ∈ U , the total number of u’s neighbors in UF (u, S)is at least 9d/10 of its
total number of neighbors. Hence, if an entry xi is not active, we expect no more than,
say 2d/10 of its neighbors in V to be active. Hence, we can recover the vector x with high
probability by setting

xi = threshold2d/10 (#neighbors of xi active) (4.27)

Perhaps even more surprisingly, [1] show that one can learn the connect graphs G(l) in a
multilayer neural network by learning the bottom-most layers first, and then moving upward
thhrough the graph:

Theorem 4.3 (Generalization to Deep Nets). Given a deep neural network with layers
x(l) and weighted connection graphs G(l) drawn with expected degree d(l), and edge weights
uniformly in [−1, 1], and where the samples in the top layer are binary vectors with uniform
sparse support of size ρn. Then, if ρ is sufficiently small, and the degrees d(l) do not grow
too quickly, then the ground truth graphs G(l) and corresponding samples x can be learned
with high probability. In fact, they can be learned my infering the second to bottom layer
from the bottom layer, and then moving up layerwise through the network.

References

[1] Sanjeev Arora, Rong Ge, Aditya Bhaskara, Tengyu Ma. “Provable Bounds for Learning
Some Deep Representations.” Journal of Machine Learning, volume 32, 2014.

[2] Sanjeev Arora, Rong Ge, Ankur Moitra. “New Algorithms for Learning Incoherent and
Overcomplete Dictionaries” Conference on Learning Theory, 2014.

[3] Arora, Sanjeev, et al. “Simple, Efficient, and Neural Algorithms for Sparse Coding”
arXiv preprint arXiv:1503.00778, 2015

[4] Candes, Emmanuel J. “The restricted isometry property and its implications for com-
pressed sensing.” Comptes Rendus Mathematique 346.9 (2008): 589-592.

[5] Bruno A. Olshausen and David J. Field. “Sparse coding with an overcomplete basis set:
a strategy employed by v1.” Vision Research, 37:3311–3325, 1997a.

[6]

Page 11 of 11

