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1 Concluding thoughts about last time and segue to today’s
topics

The dominant model for supervised learning from a theory viewpoint is SVM or Kernel
SVM. We discussed SVM’s last time; just a linear classifier.

A kernel is a mapping from datapoint x to a point φ(x) in a higher-dimensional space.
Example: map (x1, x2, . . . , xn) to the n3-dimensional vector (xi1xi2xi3). The coordinates of
φ(x) can be seen as features.

What makes kernel SVMs reasonably practical are the following two facts: (i) the stan-
dard algorithm for fitting SVM’s only needs the ability to compute inner products of pairs
of data points. Thus they also work for kernel SVMs if the kernel is such that 〈φ(x), φ(y)〉
is easy to compute given x, y. This is true for all the popular kernels. Thus in the above
example, there is no need to work with the explicit n3 size representation. (ii) the running
time and the sample complexity of the algorithm is proportional to 1/λ, where λ is the
margin between the 0 examples and the 1 examples. Thus the running time can be small
even if the kernel implicitly is mapping to a very high dimensional space.

The theoretical justification for kernel SVMs is the margin hypothesis: For every clas-
sification task there is a reasonable kernel for it that also has large margin (hence, can be
fitted efficiently)

The lure of kernel SVMs is that they promise to fold in the feature learning with the
classification task. Unfortunately, in practice people need to use more explicit ways of
learning features, which gives a new representation for the data and then one can fit a
classifier on top.

This brings us to today’s topic, which is feature learning. Just as with classfication, this
can be done in a generative and nongenerative setting.

Example 1 In the k-means problem one is given points x1, x2, . . . ,∈ <d and one is trying
to find k points (called means) c1, c2, . . . , ck so as to minimize∑

i

|xi − pi|2,

where pi is the closest mean to xi.
After learning such means, each point has been labeled from 1 to k, corresponding to

which mean it is closest to.
The generative analog of this would be say mixture of k gaussians. Each datapoint

could be labeled with a k-tuple, describing its probability of being generated from each of
the gaussians.
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The nongenerative feature learning problems (such as k-means) are often NP-hard,
whereas the generative version seems potentially easier (being average case). So I am
attracted to the generative setting.

2 Linear Algebra++

The mathematical problems most directly useful to feature learning have to do with ex-
tensions of linear algebra. Recall that your freshman linear algebra class consisted of the
following three main methods. (a) Solving linear equations. Ax = b. (b) Computing
rank, which we can also think of as matrix factorization: Given n ×m matrix M rewrite
it as M = AB where A is n × r, B is r × m and r is as small as possible. (c) Eigen-
values/eigenvectors and singular values/singular vectors. For instance, every symmetric
matrix M can be rewritten as ∑

i

λiuiu
T
i ,

where ui’s are eigenvectors and λi’s are eigenvalues. This is called the spectral decompo-
sition (if the matrix is not symmetric, the analogous expression is called Singular Value
Decomposition).

Linear Algebra++ is my name for the above problems with any subset of the following
extensions: (i) require some coordinates of the solution to be nonnegative. (ii) require a
solution with a specified number or pattern of nonzeroes. (iii) solve in the presence of some
kind of noise.

Example 2 If we have to solve Ax = b subject to x being nonnegative, then that is
tantamount to linear programming, which was only discovered to be solvable in poly time
in 1979.

If we have to solve Ax = b subject to x having only k nonzeroes then this is the sparse
recovery problem that is NP-hard.

If we have to solve M = AB in presence of coordinate-wise noise, we may be looking
for desired A,B such that we minimize∑

ij

|Mij − (AB)ij |2.

This is minimized by truncating the SVD to the first r terms. We will denote the best rank
k approximation to M by Mk.

You never saw most of these extensions in your freshman linear algebra because they are
NP-hard. But they are ubiquitous in ML settings.

3 Linearized models

The notion of features is often in some linearized setting: topic models, sparse coding,
sparse recovery. We will see these in later lectures.

Rest of the lecture covered sparse recovery (Moitra’s lecture notes); SVD (my lecture
notes from COS 521) and use of SVD for clustering (Hopcroft-Kannan book).


