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Lecture 1: A whirlwind survey of machine learning and ML theory.

Various meanings of learning. Usual assumption: data consists of iid samples from some
distribution. (Philosophical aside: De Finetti’s theorem, exchangeability.)
A running example in this lecture will be linear classifiers.

Unsupervised vs Supervised.

Unsupervised: Unlabeled data. Usually need some kind of model for how the data
was generated (the “story”) and then recover the model parameters. Examples:
k-means and other forms of clustering, loglinear models, bayes nets, ..

Often NP-hard.

Supervised: Training data is labeled by a human (labels could be binary, or in
[1..k]). Algorithm needs to predict labels on future data. Examples: Decision trees,
SVMs, k-NN.

Generalization bounds: connect performance on training data with that on
unseen data (i.e. the entire distribution).

Rough idea: Suppose there is a classifier that is representable with M bits and has
error at most \epsilon on the full distribution. Then if the training set has size at
least f(M + K, \epsilon), then any classifier describable in K bits that has error at
most \epsilon on the training set will have error at most 2\ epsilon on the entire
distribution. Furthermore, if any classifier has error at most \epsilon/2 on the
entire distribution, it has error at most \epsilon on the sample. (Thus the method
is complete and sound: if there exists a good classifier, it can be found by
examining a small set of training points, and conversely every classifier that is
good enough on the samples is also good enough for the entire distribution.)

Proof sketch: Chernoff bounds. Only 2M classifiers that can be represented using
M bits. If any M-bit classifier has error more than 2\epsilon fraction of points of
the distribution, then the probability it has error only \epsilon fraction of training
set is < 2'M, Hence whp no bad classifier can be good on the training points.

There is a more general theory for computing the number of training points that
involves VC dimension. Pls see online sources.

The classical philosophical principle Occam’s razor is related to this.

Example of training: Perceptron algorithm for linear classifier. (Can think of as a
way to determine weights of features.) Completely nonbayesian description.



Can also turn into convex program using the notion of a margin.
Discriminative vs Generative.

Discriminative: Only know P(label| data). (Example 1: label = linear threshold
corresponds to SVM. Note this is deterministic. Example 2: Logistic regression.
Smoothened version of SVM.) Examples of Discriminative learners: decision trees,
SVMs, kernel SVMs, deep nets, logistic regression etc. SVMs and logistic
regression can be solved by convex optimization.

Generative: Know an expression for P(label, data). Estimate P(label|data) by
Bayes rule and calculating P(label, data) /P(data). For an example see the
application to spam classification in Lecture notes by Cynthia Rudin on Naive
Bayes.

Also see the chapter in Mitchell’s book, which shows that logistic regression
corresponds to a naive bayes estimator where coordinates are iid Gaussian.

For a more hands-on viewpoint with worked out examples, see Chris Manning’s
lecture notes.
https://web.stanford.edu/class/cs124/lec/Maximum_Entropy_Classifiers.pdf

(Aside: Logistic regression is great right? How about if we stack up logistic
regression units in a circuit? We get deep nets. Training these is a nontrivial task
and we only know of heuristic algorithms. We don’t know of a good bayes
interpretation of such deep net classifiers.)

There can be advantages to each. Discriminative needs fewer assumptions.
Generative is easier to adapt to semisupervised settings.

See

Relevant chapter on generative vs discriminative in Tom Mitchell’s book.

On discriminative vs generative: A comparison of logistic regression and naive
bayes, by Ng and Jordan in NIPS 2001.

Generative or Discriminative? Getting the best of both worlds by Bishop and
Lasserre. Bayesian Statistics 2007.

Regularization. Technique used to avoid overfitting. For this it is better to use a

less complicated solution, and adding a regularizer to the objective can help with
this. (related to the generalization theory; a rough analogy is to restrict yourself



to solutions that can be described with fewer # of bits. This is only a rough
intuition)

We will focus a lot on unsupervised learning.

Max Likelihood and Maximum Entropy Principle.

Given a choice between many possible distributions that fit the data, pick the one
with maximum entropy.

Example: We are given a die that, when thrown, produces an expected value 4.7.
What is the chance that it produces 5?7 Solution: Let

pi = prob it produces i. Then average of i p; is 4.7. Compute values of p;‘s that
maximize entropy subject to this average.

Example 2: If we are only given the mean of a distribution, the max entropy
distribution consistent with this is the exponential. (If the variable is n-variate,
the distribution is loglinear.)

Example 3: If we are only given the mean and the covariances of a distribution
then the max entropy distribution consistent with that is the gaussian.
Max likelihood method
Find the parameter vector Theta that maximizes the likelihood of seeing the data.
(Aside: Amazingly, Shannon in 1948 also invented NLP in addition to information theory
by describing n-gram models for languages and suggesting measuring them using his

entropy measure, which we can think of as max likelihood.
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf)

Example: Max log likelihood expression for logistic regression from
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression



Recall that in logistic regression, we had a training set {(z,y™),..., (2™, ™)} of mlabeled
examples, where the input features are ;@ ¢ g*+. (In this set of notes, we will use the notational
convention of letting the feature vectors xbe n+ 1 dimensional, with xg = 1 corresponding to the
intercept term.) With logistic regression, we were in the binary classification setting, so the labels
were 4@ ¢ {0,1}. Our hypothesis took the form:

1
ho(z) = 1+ exp(—07z)’

and the model parameters 6 were trained to minimize the cost function
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This expression is convex, and so gradient descent methods find the best fit very fast. In
fact, this computational ease is the reason for the popularity of logistic regression ---this
popularity dates back to pre-computer days when people were using slide rules etc.

Unfortunately, when you compute the log likelihood for most other settings, the
expression turns out to be nonconvex. Such nonconvex optimization often turns out to

be NP-hard (as has been proved for many settings).

Simple example: mixture of spherical gaussians of the same radius. Maximising the log
likelihood is tantamount to k-means clustering.

(From Arora-Kannan: Learning Mixtures of Separated Nonspherical Gaussians;
https://www.cs.princeton.edu/~arora/pubs/gaussians.pdf)

Trying to overcome this intractability is a major goal in this course.



4. Max-likelihood estimation. Now we describe an algorithm for max-
likelihood fit of a mixture of k spherical Gaussians of equal radius to (possibly)
unstructured data. First we derive a combinatorial characterization of the optimum
solution in terms of the k-median (sum of squares, Steiner version) problem. In
this problem, we are given M points xy, x2, ..., xp € R" in R" and an integer k.
The goal is to identify k points p;, p2, ..., px that minimize the function
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where p.j) is the point among py,..., px that is closest to j and | - | denotes
Euclidean distance.

THEOREM 13. The mixture of k spherical Gaussians that minimizes the log-
likelihood of the sample is exactly the solution to the above version of k-median.

PROOF. Recall the density function of a spherical Gaussian of variance o (and
radius o \/n) is
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Let x1,x2,...,xp € N" be the points. Let p|, p2, ..., pr denote the centers
of the Gaussians in the max-likelihood solution. For each data point x; let p.(;)
denote the closest center. Then the mixing weights of the optimum mixture
wy, wa, ..., wy are determined by considering, for each i, the fraction of points
whose closest center is p;.

The log-likelihood expression is obtained by adding terms for the individual
points to obtain
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The optimum value & is obtained by differentiation,
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which simplifies the log-likelihood expression to
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Thus the goal is to minimize &, which from (27) involves minimizing the familiar
objective function from the sum-of-squares version of the k-median problem.



