

Matrix factorization motivation

- Discover/use latent factors

 attributes, topics, features
- Factor matrices to uncover latent factors
- Don't know what latent factors represent – can conjecture

- must choose f

2

- get estimate of R as R_f = PQ^T
 R_f has holes of R filled in
- Several methods for estimation, e.g. – Gradient descent
 - Stochastic gradient descent
 - Koren et al. Matrix Factorization Techniques for Recommender Systems, IEEE Computer, Aug 2009
 - Least squares based calculations
 Bell et al Modeling Relat' ships at Multiple Scales to Improve Accuracy of Large Recom. Sys., KDD Aug 2007.

for K the set of (u,i) for which $R_{(u,i)}$ has a value

Simple Step: Gradient Descent • Minimize for one element change: • choose one element of P or one element of Q to vary, $say P_{(r,s)}$ $(PQ^{T})_{(r,j)} = (\sum_{k, k \neq s}) P_{(r, k)} * Q_{(j, k)}) + x * Q_{(j, s)}$ • err(P,Q) becomes equation with one unknown • look at only terms involving x • get sum over j for which $R_{(r,j)}$ has a value of: $(R_{(r,j)} - (PQ^{T})_{(r,j)})^2 = (R_{(r,j)} - (\sum_{k, k \neq s}) P_{(r, k)} * Q_{(j, k)}) - x * Q_{(j, s)})^2$ - take derivative wrt x, set to 0, solve

High-level issues for Collaborative Filtering: Global effects

Effects over many or all of ratings

- ✓ different users have different rating scales
- metadata (attributes) for items and/or users hybrid content/collaborative
- date of rating
- · trend of user's ratings over time
- · trend of item's ratings over time

Reference: Scalable Collaborative Filtering w/ Jointly Derived Neighborhood Interpolation Weights, Bell and Koren, *IEEE Intern. Conf. Data Mining* (part of winning Netflix contest team)⁹

Refinement & Personalization Summary

- · Looked at several techniques to modify search
- explicit user feedback
- · user behavior: history
 - user history
 - crowd history
 - collaborative history: "people like you"
- role of social networks
 - general analysis
 - relationships
- · models of recommender systems

10

12

"Topic Sensitive" PageRank

- Use pre-defined topics
 - Open Directory Project (DMOZ)
 - "the largest, most comprehensive human-edited directory of the Web."
 - 16 top-level topics
- Each page has PageRank for each topic – Degree to which page is part of topic
- Calculate similarity of query to each topic
 - Use linear combination of topic PageRanks based on similarity values query to topic

13

Personalized PageRank

- Kamvar et. al.
- Random leaps are biased by personal interests change v
- Combined with use of block structure to make more efficient:
 - Divide Web graph into blocks (clusters)Use high-level domains (e.g. princeton.edu)
 - Calc. local PageRank within each block
 - Collapse each block into 1 node new graph
 Weighted edges between nodes
 - Calc. PageRank with biased leaps for block structure
 - Weight local PageRanks with block PageRank
 Use to initialize power calculation