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Using and storing 
the index 
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Review: Inverted Index 
•  For each term, keep list of document 

entries, one for each document in which 
it appears:  a postings list 
– Document entry is list of positions at which 

term occurs and attributes for each 
occurrence:  a posting 

•  Keep summary term information 
•  Keep summary document information 

meta-data 
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Consider “advanced search” queries 

Content Coordination 
•  Phrases 
•  Numeric range 
•  NOT 
•  OR 

 

Document Meta-data 
• Language 
• Geographic region  
• File format 
• Date published 
• From specific domain 
• Specific licensing rights  
• Filtered by “safe search” 

Issue of efficient retrieval 
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Basic retrieval algorithms 

•  One term 
•  AND of several terms 
•  OR of several terms 
•  NOT term 
•  proximity 
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Basic postings list processing: 
Merging posting lists 

•  Have two lists must coordinate 
– Find shared entries and do “something” 
– “something” changes for different 

operations 
•  Set operations UNION? INTERSECTION? 

DIFFERENCE? … 
– Filter with document meta-data as process 
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Basic retrieval algorithms: 
using merging  of postings lists 

HOW? 
•  AND of several terms 
•  OR of several terms 
•  NOT term 
•  proximity 
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Basic retrieval algorithms 
•  One term:   

–  look up posting list in (inverted) index 
•  AND of several terms:   

–  Intersect posting lists of the terms:  a list merge 
•  OR of several terms: 

–  Union posting lists of the terms 
–  eliminate duplicates:  a list merge  

•  NOT term 
–  If terms AND NOT(other terms), take a difference 
–  a list merge (similar to AND) 

•  Proximity 
–  a list merge (similar to AND) 
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Algorithms for Merging Postings Lists:  
two unsorted lists 

How? 
 

Role call 
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Merging two unsorted lists 

•  Read 2nd list over and over - once for each 
entry on 1st list 
–  computationally expensive  

time O(|L1|*|L2|)  where |L| length list L 

•  Build hash table on entry values;  
   insert entries of one list, then other;  
   look for collisions 

–  must have good hash table 
–  unwanted collisions expensive 
–  often can’t fit in memory:  disk version 

•  Sort lists; use algorithm for sorted lists 
–  often lists on disk:  external sort 
–  can sort in O(|L| log |L|) operations 

X 
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Sorted lists 

•  Lists sorted by some identifier 
–  same identifier both lists;  not nec. unique 

•  Read both lists in “parallel” 
–  Classic list merge:  
    (sorted list1 , sorted list2 ) ⇒ sorted set union 
–  General merge: if no duplicates, get time |L1|+|L2| 

•  Build lists so sorted  
–  pay cost at most once 
–  maybe get sorted order “naturally” 

•  If only one list sorted, can do binary search of 
sorted list for entries of other list  
–  Must be able to binary search! - rare! 

•  can’t binary search disk 
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Keys for documents 
For posting lists, entries are documents 
What value is used to sort? 

•  Unique document IDs 
–  can still be duplicate documents 
–  consider for Web when consider crawling 

•  document scoring function that is 
independent of query 
–  PageRank, HITS authority 
–  sort on document IDs as secondary key 
–  allows for approximate “highest k” retrieval 

•  approx. k highest ranking doc.s for a query 
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Keys within document list 

Processing within document posting 

•  Proximity of terms 
–  merge lists of terms occurrences within same doc. 

•  Sort on term position 
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Computing document score 

•  “On fly”- as find each satisfying 
document 

•  Separate phase after build list of 
satisfying documents 

•  For either, must sort doc.s by score 
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Web query processing: limiting size  
•  For Web-scale collections, may not process 

complete posting list for each term in query  
–  at least not initially 

•  Need docs sorted first on global (static) quantity 
–  why not by term frequency for doc? 

•  Only take first k doc.s on each term list 
–  k depends on query  - how? 
–  k depends on how many want to be able to return 

– Google:  1000 max returns 
–  Flaws w/ partial retrieval from each list? 

–  Other limits?   query size 
– Google:  32 words max query size 
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Limiting size with term-based sorting  
•  Can sort doc.s on postings list by score of term 

–  term frequency + … 

•  Lose linear merge - salvage any? 
•  Tiered index: 

–  tier 1: docs with highest term-based scores, sorted 
by ID or global quantity 

–  tier 2: docs in next bracket of score quality, sorted 
–  etc.    
–  need to decide size or range of brackets  

•  If give up AND of query terms, can use idf too 
–  only consider terms with high idf = rarer terms 
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Data structure for inverted index? 

How access individual terms and each 
associated postings list? 

 
Assume an entry for each term points to 

its posting list 
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Data structure for inverted index? 
•  Sorted array:   

–  binary search IF can keep in memory 
–  High overhead for additions 

•  Hashing 
–  Fast look-up 
–  Collisions 

•  Search trees:  B+-trees 
–  Maintain balance - always log look-up time 
–  Can insert and delete  

18 List for “ace” 
adapted from slide for Database Management Systems  

by authors R. Ramakrishnan and J. Gehrke 
 

Example B+ Tree 
order = 2:  2 to 4 search keys per interior node 

 

ace ad 

Root 

dog 

dye egg 

cad call dog … dye … … … …. … … 

cab bill 

bit 

pig heart soap 

bat bee bill boy brie cat cell 

… 

dune eel 

… 

List for “ad” 
List for “bat” 

… … … 
List for “eel” 

… 
… 

… 

leaves 

… 

… 
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B+- trees 
•  All index entries are at leaves 
•  Order m B+ tree has m+1 to 2m+1 children for 

each interior node 
–  except root can have as few as 2 children 

•  Look up: follow root to leaf by keys in interior 
nodes 

•  Insert:   
–  find leaf in which belongs 
–  If leaf full, split 
–  Split can propagate up tree 

•  Delete: 
–  Merge or redistribute from too-empty leaf 
–  Merge can propagate up tree 20 

•  Each leaf is file page (block) on disk 
•  Each interior node is file page on disk 
•  Keep top of tree in buffer (RAM) 
•  Typical sizes: 

– m  ~ 200;  
– average fanout  ~  267 

• Height 4 gives ~ 5 billion entries 

Disk-based B+ trees for large data sets 
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•  Save space 

•  Each interior node key is shortest prefix 
of word needed to distinguish which 
child pointer to follow 

• Allows more keys per interior node  
• higher fanout 

– fanout determined by what can fit 
– keep at least 1/2 full 

prefix key B+ trees 
Revisit hashing -  on disk 

•  hash of term gives address of  bucket 
on disk 

•  bucket contains pairs  
(term, address of first page of postings list) 

•  bucket occupies one file page  
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