
1

1

Using and storing
the index

2

Review: Inverted Index
•  For each term, keep list of document

entries, one for each document in which
it appears: a postings list
– Document entry is list of positions at which

term occurs and attributes for each
occurrence: a posting

•  Keep summary term information
•  Keep summary document information

meta-data

3

Consider “advanced search” queries

Content Coordination
•  Phrases
•  Numeric range
•  NOT
•  OR

Document Meta-data
• Language
• Geographic region
• File format
• Date published
• From specific domain
• Specific licensing rights
• Filtered by “safe search”

Issue of efficient retrieval
 4

Basic retrieval algorithms

•  One term
•  AND of several terms
•  OR of several terms
•  NOT term
•  proximity

5

Basic postings list processing:
Merging posting lists

•  Have two lists must coordinate
– Find shared entries and do “something”
– “something” changes for different

operations
•  Set operations UNION? INTERSECTION?

DIFFERENCE? …
– Filter with document meta-data as process

6

Basic retrieval algorithms:
using merging of postings lists

HOW?
•  AND of several terms
•  OR of several terms
•  NOT term
•  proximity

2

7

Basic retrieval algorithms
•  One term:

–  look up posting list in (inverted) index
•  AND of several terms:

–  Intersect posting lists of the terms: a list merge
•  OR of several terms:

–  Union posting lists of the terms
–  eliminate duplicates: a list merge

•  NOT term
–  If terms AND NOT(other terms), take a difference
–  a list merge (similar to AND)

•  Proximity
–  a list merge (similar to AND)

8

Algorithms for Merging Postings Lists:
two unsorted lists

How?

Role call

9

Merging two unsorted lists

•  Read 2nd list over and over - once for each
entry on 1st list
–  computationally expensive

time O(|L1|*|L2|) where |L| length list L

•  Build hash table on entry values;
 insert entries of one list, then other;
 look for collisions

–  must have good hash table
–  unwanted collisions expensive
–  often can’t fit in memory: disk version

•  Sort lists; use algorithm for sorted lists
–  often lists on disk: external sort
–  can sort in O(|L| log |L|) operations

X

10

Sorted lists

•  Lists sorted by some identifier
–  same identifier both lists; not nec. unique

•  Read both lists in “parallel”
–  Classic list merge:
 (sorted list1 , sorted list2) ⇒ sorted set union
–  General merge: if no duplicates, get time |L1|+|L2|

•  Build lists so sorted
–  pay cost at most once
–  maybe get sorted order “naturally”

•  If only one list sorted, can do binary search of
sorted list for entries of other list
–  Must be able to binary search! - rare!

•  can’t binary search disk

11

Keys for documents
For posting lists, entries are documents
What value is used to sort?

•  Unique document IDs
–  can still be duplicate documents
–  consider for Web when consider crawling

•  document scoring function that is
independent of query
–  PageRank, HITS authority
–  sort on document IDs as secondary key
–  allows for approximate “highest k” retrieval

•  approx. k highest ranking doc.s for a query
12

Keys within document list

Processing within document posting

•  Proximity of terms
–  merge lists of terms occurrences within same doc.

•  Sort on term position

3

13

Computing document score

•  “On fly”- as find each satisfying
document

•  Separate phase after build list of
satisfying documents

•  For either, must sort doc.s by score

14

Web query processing: limiting size
•  For Web-scale collections, may not process

complete posting list for each term in query
–  at least not initially

•  Need docs sorted first on global (static) quantity
–  why not by term frequency for doc?

•  Only take first k doc.s on each term list
–  k depends on query - how?
–  k depends on how many want to be able to return

– Google: 1000 max returns
–  Flaws w/ partial retrieval from each list?

–  Other limits? query size
– Google: 32 words max query size

15

Limiting size with term-based sorting
•  Can sort doc.s on postings list by score of term

–  term frequency + …

•  Lose linear merge - salvage any?
•  Tiered index:

–  tier 1: docs with highest term-based scores, sorted
by ID or global quantity

–  tier 2: docs in next bracket of score quality, sorted
–  etc.
–  need to decide size or range of brackets

•  If give up AND of query terms, can use idf too
–  only consider terms with high idf = rarer terms

16

Data structure for inverted index?

How access individual terms and each
associated postings list?

Assume an entry for each term points to

its posting list

17

Data structure for inverted index?
•  Sorted array:

–  binary search IF can keep in memory
–  High overhead for additions

•  Hashing
–  Fast look-up
–  Collisions

•  Search trees: B+-trees
–  Maintain balance - always log look-up time
–  Can insert and delete

18 List for “ace”
adapted from slide for Database Management Systems

by authors R. Ramakrishnan and J. Gehrke

Example B+ Tree
order = 2: 2 to 4 search keys per interior node

ace ad

Root

dog

dye egg

cad call dog … dye … … … …. … …

cab bill

bit

pig heart soap

bat bee bill boy brie cat cell

…

dune eel

…

List for “ad”
List for “bat”

… … …
List for “eel”

…
…

…

leaves

…

…

4

19

B+- trees
•  All index entries are at leaves
•  Order m B+ tree has m+1 to 2m+1 children for

each interior node
–  except root can have as few as 2 children

•  Look up: follow root to leaf by keys in interior
nodes

•  Insert:
–  find leaf in which belongs
–  If leaf full, split
–  Split can propagate up tree

•  Delete:
–  Merge or redistribute from too-empty leaf
–  Merge can propagate up tree 20

•  Each leaf is file page (block) on disk
•  Each interior node is file page on disk
•  Keep top of tree in buffer (RAM)
•  Typical sizes:

– m ~ 200;
– average fanout ~ 267

• Height 4 gives ~ 5 billion entries

Disk-based B+ trees for large data sets

21

•  Save space

•  Each interior node key is shortest prefix
of word needed to distinguish which
child pointer to follow

• Allows more keys per interior node
• higher fanout

– fanout determined by what can fit
– keep at least 1/2 full

prefix key B+ trees
Revisit hashing - on disk

•  hash of term gives address of bucket
on disk

•  bucket contains pairs
(term, address of first page of postings list)

•  bucket occupies one file page

22

