Finding near-duplicate documents

Duplicate versus near duplicate documents

- Duplicate = identical?
- Near duplicate: small structural differences • not just content similarity
- define "small"
- date change?
- small edits?
- metadata change?
- other?

Applications Crawling network Indexing Returning query results cluster near duplicates; return 1 Plagiarism

Framework

2

- Algorithm to assign quantitative degree of similarity between documents
- Issues
 - What is basic token for documents?
 - character
 - word/term
 - What is threshold for "near duplicate"?
 - What are computational costs?

Edit distance for collections

- token = word
- compare other applications
- Cost is O(Σ_i |Doc_i|*|Doc_j|)
- Right sense of similarity?

A general paradigm to find duplicates in N docs:

1. Define function *f* capturing contents of each document in one number

"Hash function", "signature", "fingerprint"

- 2. Create <f(doc_i), ID of doc_i> pairs
- 3. Sort the pairs
- Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

Compare: computing a similarity score on pairs of documents

9

11

"Syntactic clustering" We will look at this one example: Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig, Syntactic Clustering of the Web Sixth International WWW Conference, 1997. "syntactic similarity" versus semantic Sequences of words Finding near duplicates Doc = sequence of words Word = Token Uses sampling Similarity based on shingles Does compare documents

Shingles

=> "near duplicate" not transitive

- A *w*-shingle is a contiguous subsequence of *w* words
- The *w*-shingling of doc D, S(D, *w*) is the set of *unique* w-shingles of D

17

Last time

 Defining and detecting near-duplicate documents

Today

- · Example Syntactic Clustering algorithm
- Finish detecting near-duplicates
- Non-text retrieval

Next

Finish non-text retrieval

18

Example mappings

- R = [0, 10000]
- Let H(i) = i*1000; 1≤i≤7
- Let m=5
- · Define a permutation
 - Example
 - Get randval = Math.random()
 - Compute function of randval and H(i) to get $\Pi(i)$

20

· Do 5 times for 5 permutations

ψ(A) =	= { <i>x</i> (Π _i , A)	1≤i≤m }	= {568, 1	150, 6119	, 6880, 19	905}
П1:	<u>568</u> 1136	П ₂ :	<u>1150</u> 2301	П3:	9223 8447	
	1705 2273		3452 4602		7671 6895	
	2842 3410		5753 6904		<u>6119</u> 5343	
П4:	3979 9376	П5:	8054 2976			
	8752 8128		5952 8929			
	7504 <u>6880</u>		<u>1905</u> 4881			
						21

Π ₁ : <u>568</u> Π ₂ : <u>1150</u> Π ₃ : <u>9223</u> <u>1136</u> Π ₂ : <u>2301</u> Π ₃ : <u>9223</u> <u>8447</u> <u>1705</u> 3452 7671 <u>2773</u> 4602 6895 <u>2842</u> 5753 6119 <u>3410</u> 6904 5343 <u>3979</u> 8054 4567 Π ₄ : <u>9376</u> Π ₅ : <u>2976</u> <u>8752</u> 5952 <u>8128</u> 8929 <u>7504</u> <u>4905</u> <u>6880</u> 4881						
1705 3452 7671 2273 4802 6895 2842 5753 6119 3410 6904 5343 3979 8054 4567 Π₄: 9376 Π₅: 2976 8752 5952 8128 8929 7504 1905 505 505	П₁:		П2:		П3:	
2273 4602 6895 2842 5753 6119 3410 6904 5343 3979 8054 4567 Π₄: 9376 Π₅: 2976 8752 5952 8128 8929 7504 1905 5952 5952		1136	-	2301	-	8447
2842 5753 6119 3410 6904 5343 3979 8054 4567 Π₄: 9376 Π₅: 2976 8752 5952 8128 8929 7504 1905 505 505						
3410 6904 5343 3979 8054 4567 Π₄: 9376 Π₅: 2976 8752 5952 8128 8920 7504 1905 1905 1905						
3979 8054 4567 Π₄: 9376 Π₅: 2976 8752 5952 6128 8929 7504 1905 1905		2842		5753		6119
Π₄: 9376 Π₅: 2976 8752 5952 8128 8929 7504 <u>1905</u>		3410		6904		5343
8752 5952 8128 8929 7504 <u>1905</u>		3979		8054		<u>4567</u>
8752 5952 8128 8929 7504 1905	П4:	9376	П5:	2976		
6880 4881						
		6880		4881		
		5633		834		

				1150, 6119, 6880, 1905} 1150, 4567, 5633, 834}
Π ₁ :	568 1136 1705 2273 2842 3410 3979	Π ₂ :	1150 2301 3452 4602 5753 6904 8054	П ₃ : 9223 8447 7671 6895 <u>6119</u> 5343 <u>4567</u>
Π ₄ :	9376 8752 8128 7504 6880 6256 5633	Π ₅ :	2976 5952 8929 <u>1905</u> 4881 7858 <u>834</u>	Resemblance estimate: $ \psi(A) \cap \psi(B) / m$ = 2/5 = .4 Actual resemblance = 3/7 = .43

- 1. Calculate sketch $\psi(D_i)$ for every $D_i |O(\Sigma_i m |D_i|)$
- 2. Calculate $|\psi(D_i) \cap \psi(D_j)| = ct_{ij}$ for each nonempty intersection:
 - Produce list of <shingle value, docID> pairs for all shingle values x(Π_k, D_i) in the sketch for each doc.
 - ii. Sort the list by shingle value
 - Produce all triples <iD(D_i), ID(D_j), ct_i> for which ct_i>0 This not linear-time for the list of docs for one shingle value
- 3. Recognize duplicate, near-duplicate documents: resemblance ct_{i,i}/m above a large threshold

25

$\label{eq:algorithm} \begin{array}{l} Algorithm \ cost \\ 1. \ \ Calculate \ \textit{sketch} \ \psi(D_i) \ \text{for every } D_i \ \ O(\ \Sigma_i m |D_i| \) \end{array}$

- 2. Calculate $|\psi(D_i) \cap \psi(D_j)| = ct_{ij}$ for each nonempty intersection:
 - Produce list of <shingle value, docID> pairs for all shingle values x(Π_k, D_i) in the sketch for each doc.
 - ii. Sort the list by shingle value O(mN log (mN))
 - Produce all triples <ID(D_i), ID(D_j), ct_i> for which ct_i>0 This not linear-time for the list of docs for one shingle value O(mN²)
- 3. Recognize duplicate, near-duplicate documents: resemblance ct_{i.}/m above a large threshold

27

28

30

Revisit the original paradigm A general paradigm to find duplicates in N docs: 1. Define function f capturing contents of each document in one number O(|doc|) "Hash function", "signature", "fingerprint" 2. Create <f(doc,), ID of doc,> pairs O(∑_{i=1...N} (|doc,|)) 3. Sort the pairs O(N log N) 4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold O(N) Compare: computing a similarity score on pairs of documents

29

Syntactic Clustering Paradigm Does compare docs, so not same as paradigm

- we started with, but uses ideasContents of doc captured by sketch a set of
- shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don't look at all doc pairs, look at all doc pairs that share a shingle value
- · Text clusters by similarity threshold

"meta-sketch"

- 1. Sort shingle values of a sketch
- 2. Compute the shingling of the sequence of shingle values
 - Each original shingle value now a token
 - · Gives "supershingles"
- 3. "meta-sketch" = set of supershingles
- One supershingle in common =>

sequences of shingles in common Documents with ≥1 supershingle in common => similar

Each supershingle for a doc. characterizes the doc
 Sort <supershingle, docID> pairs: docs sharing a supershingle are similar => our first paradigm ³¹

Pros and Cons of Supershingles

- + Faster
- Problems with small documents not enough shingles
- Can't do containment
 Shingles of superset that are not in subset
 break up sequence of shingle values

32

Using with Web Crawling

• Want know if new doc. too similar to ones seen

33

35

· What this calculation look like?

Using with Web Crawling

- Want know if new doc. too similar to ones seen
- · No clustering required
- calculate sketch or supershingle of new document
- Look up to see if have similar document – or similar document that is fresh enough
 - Need efficient look-up

34

36

Variations of shingling Can define different ways to do sampling Studies in original paper used modular arithmetic sketch formed by taking shingle hash values mod some selected m

Original experiments (1996) by Broder et. al.

- · 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle "fingerprints"
- Sketch using 4% shingles (variation of alg. we've seen)
- Used count of shingles for similarity
- Using threshold t = 50%, found
 - 3.6 million clusters of 12.3 million docs
 2.1 million clusters of identical docs 5.3 million docs
 - remaining 1.5 million clusters mixture:
 - "exact duplicates and similar"