Precept 9

Huiwen Chang

Raytracing

* Scene.js

« Raytracer.js
— How to add new scene

* Frag/vertex: Shader.txt

Raytracing

* Function for Each Object
— Find the intersection(ray, object)
— Find the normal

Infinite cylinder-ray intersections

1999, Denis Zorin

Infinite cylinder along y of

radius r axis has equation
xX2+2z2-r2=0,

The equation for a more general
cylinder of radius r oriented along
aline p, + v t:

(A-Pa- (v d-Py)V)2 -2 =0
where q = (X,y,2z) is a point on the
cylinder.

Infinite cylinder-ray intersections

To find intersection points with a ray p + vt,
substitute g = p + vt and solve:

(p -p. t vt - (Va!p -p.t Vt)va)2 -r2=0
reducesto At°+Bt+C=0
with
A= (V - (V!Va)Va)2
B=2(v—(v,v,)Vv.,Ap—(Ap,V,)V.)

C= (Ap — (Ap’va)Va)2 _ r2
where Ap = p- p,

Finite cylinder-ray intersections

A finite cylinder with caps can be constructed as the
intersection of an infinite cylinder with a slab between
two parallel planes, which are perpendicular to the
axis.

To intersect a ray with a cylinder with caps:
m intersect with the infinite cylidner;
check if the intersection is between the planes;
intersect with each plane;
determine if the intersections are inside caps;

out of all intersections choose the on with minimal
t

Finite cylinder-ray intersections

POV -ray like cylinder with caps : cap centers at p,
and p,, radius r.

Infinite cylinder equation: p_, = p,, v, = (p,- P4)/| P>~ P4l

The finite cylinder (without caps) is described by
equations:

(q “Pa- (va,q - pa)va)2 -r2=0and (Va! q- p1) >0 and
(Vo Q- p2) <0
The equations for caps are:

(Vo d- P4) =0, (9- p4)2<r? bottom cap
(Vo d-P2) =0, (g- p,)2<r? top cap

cylinder-ray intersections

Algorithm with equations:
Step 1: Find solutions t; and t,of At2+Bt+C =0

if they exist. Mark as intersection candidates the
one(s) that are nonnegative and for which (v, q;-
p,) > 0 and (v,, g;- p,) < 0, where
qi=ptv {;

Step 2: Compute t; and t,, the parameter values for
which the ray intersects the upper and lower
planes of the caps.

If these intersections exists, mark as intersection
candidates those that are nonegative and

(a3 - p1)? < r?(respectively (q, - p;)? < r?).
In the set of candidates, pick the one with min. t.

Infinite cone-ray intersections

Infinite cone along y with apex
W half-angle o has equation
' x2+2z2-y2=0.
P The equation for a more general
cone oriented along a line p, + v_t,
» with apex at p_:
cos?q (q “Pa- (va!q - pa)va)2 -

Lo sin2o (v,,q - p,) 2 =0
where q = (x,y,z) is a point on the
Pa cone, and v, is assumed to be of
unit length.

Infinite cone-ray intersections

Similar to the case of the cylinder: substitute q =
p+vt into the equation, find the coefficients A, B,
C of the quadratic equation, solve for t. Denote

Ap = p- Pa-
cos2q (vt + Ap - (v,, vt + Ap)v,)? -

sina (v, vt+ Ap)2 =0

A = cos’ a(v —(v,v,)v,)2 —sin’ o(v,Vv,)2
B =2cos”a(v—(v,v,)v,,Ap—(Ap,V,)V,)—-2sin* o(v,v,)(Ap,V,)
C =cos’ (x(Ap —(Ap,V,)V,)2 —sin’® OL(Ap,Va)2

Finite cone-ray intersections

A finite cone with caps can also be constructed as
intersection of an infinite cone with a slab.

Intersections are computed exactly in the same way
as for the cylinder, but instead of the quadratic
equation for the infinite cylinder the equation for
the infinite cone is used, and the caps may have
different radii.

Both for cones and cylinders intersections can be
computed somewhat more efficiently if we first
transform the ray to a coordinate system aligned
with the cone (cylinder). This requires extra
programming to find such transformation.

Finite cone-ray intersections

POV-ray cone: cap centers (base point and cap
point) at p, and p,, cap radii r,and r,.

Then, assuming r, not equal tor, (otherwise it is a
cylinder) in the equation of the infinite cone { p
a

apex: p, = p; + ry(p2- P4)/(ry - 1p);
axis direction: v_ = (p,- p4)/| P>~ P4l;
apex half-angle:

tg o =(ry -)l [p2- P4l

Soft shadow

Soft shadow

Random?

Check out this site proposal, it might interest you: — Dan the Man Nov 18 13 at 15:35

8 Answers active oldest votes

—
3 p
o

C <

+100

For very simple pseudorandom-looking stuff, | use this oneliner that | found on the internet
somewhere:

float rand(vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);

}

You can also generate a noise texture using whatever PRNG you like, then upload this in the
normal fashion and sample the values in your shader; | can dig up a code sample later if you'd
like.

Also, check out this file for GLSL implementations of Perlin and Simplex noise, by Stefan

NiindmiinAan

Soft shadow

Rasterizer

 shader

— Need varying to send normal from vertex-
shader to fragment-shader

— Need varying for pixel position
— Calculate eye position by cameraPosition

