Domain-specific languages

- also called application specific languages, little languages
- narrow domain of applicability
- not necessarily programmable or Turing-complete
 - often declarative, not imperative
- \cdot sometimes small enough that you could build one yourself
- examples:
 - regular expressions
 - shell, Awk
 - XML, HTML, Troff, (LA)TEX, Markdown: markup languages
 - SQL: database access
 - R: statistics
 - AMPL: mathematical optimization

- ...

Example: Markup / document preparation languages

- $\boldsymbol{\cdot}$ illustrates topics of 333 in a different setting
 - tools
 - language design (good and bad); notation
 - evolution of software systems; maintenance
 - personal interest, research area for 10-20 years, heavy use in books

• examples:

- roff and related early formatters
- nroff (Unix man command still uses it)
- troff
- TEX
- HTML, Markdown, etc.

Unix document preparation: *roff

- text interspersed with formatting commands on separate lines
 - .sp 2
 - .in 5

This is a paragraph ...

- originally just ASCII output, fixed layout, single column
- nroff: macros, a event mechanism for page layout (Turing complete)
- troff: version of nroff for phototypesetters
 - adds features for size, font, precise positioning, bigger character sets
 - originally by Joe Ossanna (~1972); inherited by BWK ~1977
- $\boldsymbol{\cdot}$ photypesetter produces output on photographic paper or film
- \cdot first high-quality output device at a reasonable price (~\$15K)
 - predates laser printers by 5-10 years
 - predates Postscript (1982) by 10 years, PDF (1993) by 21 years
 - klunky, slow, messy, expensive media
- complex program, complex language
 - language reflects many of the weirdnesses of first typesetter
 - macro packages make it usable by mortals for standard tasks
- troff + phototypesetter enables book-quality output
 - Elements of Programming Style, Software Tools, K&R, ...

Extension to complex specialized material

- mathematics
 - called "penalty copy" in the printing industry
- tables
- drawings
- graphs
- references
- indexes
- etc.
- \cdot at the time, done by hand composition
 - not much better than medieval technology
- $\boldsymbol{\cdot}$ Bell Labs authors writing papers and books with all of these
- \cdot being done by manual typewriters
- \cdot how to mechanize the production

EQN: a language for typesetting mathematics

• BWK, with Lorinda Cherry ~1974

- idea: a language that matches the way mathematics is spoken aloud
- translate that into troff commands
 - since the language is so orthogonal, it wouldn't fit directly
 - and there isn't room anyway, since program has to be less than 65KB
 - troff is powerful enough
- use a pipeline: eqn | troff
- \cdot math mode in TEX (1978) inspired by EQN

EQN examples

x sup 2 + y sup 2 = z sup 2 $x^2 + y^2 = z^2$ f(t) = 2 pi int sin (omega t) dt $f(t) = 2\pi \int \sin(\omega t) dt$

lim from {x -> pi / 2} (tan x) = inf

$$\lim_{x \to \pi/2} (\tan x) = \infty$$

 $x = \{-b + - sqrt \{b sup 2 - 4ac\} over 2a \}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

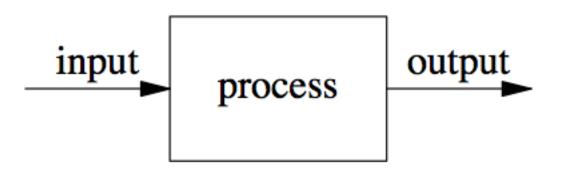
EQN implementation

- based on a YACC grammar
 - first use of YACC outside mainstream compilers

• grammar is simple

- box model
- just combine boxes in various ways: concatenate, above/below, sub and superscript, sqrt, ...

```
eqn: box | eqn box
box: text | { eqn } | box over box | sqrt box
| box sub box | box sup box | box from box to box | ...
```


• YACC makes experimental language design easy

Pic: a language for pictures (line drawings)

- new typesetter has more capabilities (costs more too: \$50K in 1977)
- can we use troff to do line drawings?
- answer: invent another language, again a preprocessor
 - add simple line-drawing primitives to troff: line, arc, spline
- advantages of text descriptions of pictures
 - systematic changes are easy, always have correct dimensions,
 - Pic has loops, conditionals, etc., for repetitive structures Turing complete!
- implemented with YACC and LEX
 - makes it easy to experiment with syntax
 - human engineering:
 - free-form English-like syntax
 - implicit positioning: little need for arithmetic on coordinates

Pic examples

.PS arrow "input" above box "process" arrow "output" above .PE

Pic examples

```
.PS
V: arrow from 0,-1 to 0,1; " voltage" ljust at V.end
L: arrow from 0,0 to 4,0; " time" ljust at L.end
for i = 1 to 399 do X
    i = i+1
    line from (L + i/100, sin(i/10) / 3 + sin(i/20) / 2
     + \sin(i/30) / 4) to (L + j/100, \sin(j/10) / 3
     + \sin(j/20) / 2 + \sin(j/30) / 4)
X
                voltage
.PE
                                                          ► time
```

Markup languages

- \cdot each of these languages has its own fairly natural notation
 - doesn't work as well when force everything into one notation
 - but also can be hard to mix, e.g., equations in diagrams in tables

• TEX/LATEX:

- "math mode" is a different language
- tables are mostly the same as underlying language
- there are no drawings (?)
- XML (eXtensible Markup Language) is a meta-language for markup
 - a text-only language for describing grammar and vocabularies of other markup languages that deal with hierarchical textual data
 - a notation for describing trees
 - internal nodes are elements; leaves are Unicode text
 - element: data surrounded by markup that describes it
- \cdot XML vocabularies put everything into a single notation
 - except for the specific tags and attributes
 - bulky, inconvenient, but uniform

XML vocabularies and namespaces

- \cdot a *vocabulary* is an XML description for a specific domain
 - Schema
 - XHTML
 - RSS (really simple syndication)
 - SVG (scalable vector graphics)
 - MathML (mathematics)
 - EPUB (electronic book format)
 - Android screen layout

- ...

namespaces

- mechanism for handling name collisions between vocabularies

```
<ns:some_tag> ... </ns:some_tag>
```

```
<ns2:some_tag> ... </ns2:some_tag>
```

MathML examples

• Firefox 28.0

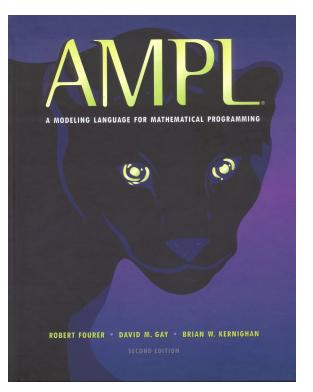
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Safari 6.1.3

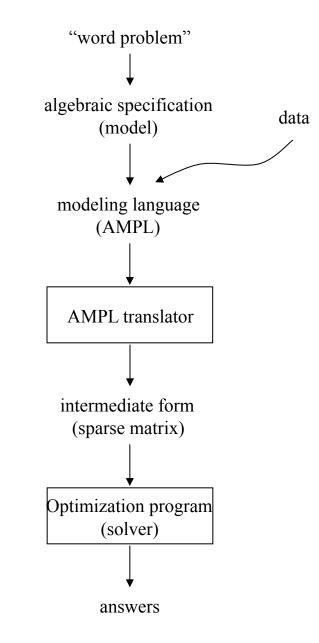
$$x = \frac{-b \pm \sqrt{b^2 - 4 \ a \ c}}{2 \ a}$$

· EQN

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$


Input is not fit for humans:

```
<mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
   <mrow>
    <mo form="prefix">&#x2212;</mo>
    <mi>b</mi>
    <mo>&#x00B1;</mo>
    <msqrt>
     <msup>
      <mi>b</mi>
      <mn>2</mn>
     </msup>
     <mo>&#x2212;</mo>
```


<mn>4</mn> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>c</mi> </msqrt> </mrow> <mrow> <mn>2</mn> <mo>⁢</mo> <mi>a</mi> </mrow> </mfrac> </mrow>

AMPL: A big DSL that got bigger

- $\boldsymbol{\cdot}$ a language and system for
 - describing optimization problems in a uniform, natural way
 - compiling descriptions into form needed by solver programs
 - controlling execution of solvers
 - displaying results in problem terms

Robert Fourer David Gay Brian Kernighan

Cost minimization: a diet model

- Find a minimum-cost mix of TV dinners that satisfies requirements on the minimum and maximum amounts of certain nutrients.
- Given:
 - F, a set of foods
 - N, a set of nutrients
 - a_{ij} = amount of nutrient i in a package of food j
 - $c_j = cost$ of package of food j, for each $j \in F$
 - f_j^{-} = minimum packages of food j, for each j \in F
 - $f_{j^{+}}$ = maximum packages of food j, for each j \in F
 - $n_i^{\mbox{-}}$ = minimum amount of nutrient i, for each $i \in N$
 - $n_i^{\, \star}$ = maximum amount of nutrient i, for each $i \in N$
- Define variables:
 - X_j = packages of food j to buy, for each $j \in F$
- Minimize: $\sum_{j \in F} c_j X_j$
- Subject to:

 $\begin{array}{l} n_i^- \leq \sum_{j \in F} a_{ij} X_j \leq n_i^+, \ \text{for each } i \in N \\ f_j^- \leq X_j \leq f_j^+, \ \text{for each } j \in F \end{array}$

AMPL version of the diet model

set FOOD;

set NUTR;

param amt {NUTR,FOOD} >= 0; param cost {FOOD} > 0; param f_min {FOOD} >= 0; param f_max {j in FOOD} >= f_min[j]; param n_min {NUTR} >= 0; param n_max {i in NUTR} >= n_min[i]; var Buy {j in FOOD} >= f_min[j], <= f_max[j]; minimize total_cost: sum {j in FOOD} cost[j] * Buy[j]; subject to diet {i in NUTR}: n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];</pre>

Diet data:

set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;
param amt (tr):

A	С	в1	В2	:=
60	20	10	15	
8	0	20	20	
8	10	15	10	
40	40	35	10	
15	35	15	15	
70	30	15	15	
25	50	25	15	
60	20	15	10	;
cost	f_mi	n f	_max	:=
3.19	0		100	
2.59	0		100	
2.29	0		100	
2.89	0		100	
1.89	0		100	
1.99	0		100	
1.99	0		100	
2.49	0		100 ;	•
n_min	n_n	nax :	=	
700	200	000		
700	200	000		
700	200	000		
700	200)00;		
	60 8 8 40 15 70 25 60 cost 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49 n_min 700 700 700 700	60 20 8 0 8 10 40 40 15 35 70 30 25 50 60 20 cost f_mi 3.19 0 2.59 0 2.59 0 2.89 0 1.89 0 1.99 0 2.49 0 n_min n_m 700 200 700 200	60 20 10 8 0 20 8 10 15 40 40 35 15 35 15 70 30 15 25 50 25 60 20 15 cost f_min f 3.19 0 15 2.59 0 2 2.89 0 1 1.89 0 1 1.99 0 1 1.99 0 1 1 700 20000 1 1 700 20000 1 1 700 20000 1 1	60 20 10 15 8 0 20 20 8 10 15 10 40 40 35 10 15 35 15 15 70 30 15 15 70 30 15 15 60 20 15 10 $cost$ f_min f_max 3.19 0 100 2.59 0 100 2.89 0 100 1.89 0 100 1.99 0 100 1.99 0 100 2.49 0 100 700 20000 700 700 20000

Running AMPL:

```
$ ampl
ampl: model diet.mod;
ampl: data diet.dat;
ampl: solve;
MINOS 5.4: optimal solution found.
6 iterations, objective 88.2
ampl: display Buy;
Buy [*] :=
BEEF
     0
 CHK
     0
FISH
     0
       0
 HAM
MCH
      46.6667
MTL
      0
 SPG
      0
 TUR
      0
```

;

AMPL: moderately successful

- $\boldsymbol{\cdot}$ a big frog in quite a small pond
 - widely used optimization tool
 - taught in courses
 - supports a small company (~5 employees)
- language started out purely declarative
- \cdot gradually has added all the trappings of programming languages
 - conditionals
 - loops
 - functions/procedures
- $\boldsymbol{\cdot}$ but with odd, irregular and unconventional syntax

Why languages succeed

- solve real problems in a clearly better way
- culturally compatible and familiar
 - familiar syntax helps (e.g., C-like)
 - easy to get started with
 - portable to new environments
- environmentally compatible
 - don't have to buy into an entire new environment to use it
 - e.g., can use standard tools and link to existing libraries
 - open source, not proprietary
- weak competition
- · good luck

Why languages fail to thrive

niche or domain disappears

poor engineering

- too big, too complicated, too slow, too late
- incompatible with environments

poor philosophical choices

- ideology over functionality
- single programming paradigm
- too "mathematical"
- too different, too incompatible