
Domain-specific languages
•  also called application specific languages, little languages

•  narrow domain of applicability
•  not necessarily programmable or Turing-complete

–  often declarative, not imperative

•  sometimes small enough that you could build one yourself

•  examples:
–  regular expressions
–  shell, Awk
–  XML, HTML, Troff, (LA)TEX, Markdown: markup languages
–  SQL: database access
–  R: statistics
–  AMPL: mathematical optimization
–  …

Example: Markup / document preparation languages

•  illustrates topics of 333 in a different setting
–  tools
–  language design (good and bad); notation
–  evolution of software systems; maintenance
–  personal interest, research area for 10-20 years, heavy use in books

•  examples:
–  roff and related early formatters
–  nroff (Unix man command still uses it)
–  troff
–  TEX
–  HTML, Markdown, etc.

Unix document preparation: *roff
•  text interspersed with formatting commands on separate lines
 .sp 2!
 .in 5!
 This is a paragraph …
•  originally just ASCII output, fixed layout, single column
•  nroff: macros, a event mechanism for page layout (Turing complete)
•  troff: version of nroff for phototypesetters

–  adds features for size, font, precise positioning, bigger character sets
–  originally by Joe Ossanna (~1972); inherited by BWK ~1977

•  photypesetter produces output on photographic paper or film
•  first high-quality output device at a reasonable price (~$15K)

–  predates laser printers by 5-10 years
–  predates Postscript (1982) by 10 years, PDF (1993) by 21 years
–  klunky, slow, messy, expensive media

•  complex program, complex language
–  language reflects many of the weirdnesses of first typesetter
–  macro packages make it usable by mortals for standard tasks

•  troff + phototypesetter enables book-quality output
–  Elements of Programming Style, Software Tools, K&R, …

Extension to complex specialized material

•  mathematics
–  called “penalty copy” in the printing industry

•  tables
•  drawings
•  graphs
•  references
•  indexes
•  etc.

•  at the time, done by hand composition
–  not much better than medieval technology

•  Bell Labs authors writing papers and books with all of these
•  being done by manual typewriters
•  how to mechanize the production

EQN: a language for typesetting mathematics

•  BWK, with Lorinda Cherry ~1974

•  idea: a language that matches the way mathematics is spoken
aloud

•  translate that into troff commands
–  since the language is so orthogonal, it wouldn’t fit directly
–  and there isn’t room anyway, since program has to be less than 65KB
–  troff is powerful enough

•  use a pipeline: eqn | troff!

•  math mode in TEX (1978) inspired by EQN

EQN examples
x sup 2 + y sup 2 = z sup 2!

f(t) = 2 pi int sin (omega t) dt!

lim from {x -> pi / 2} (tan x) = inf!

x = {-b +- sqrt {b sup 2 – 4ac} over 2a }!

EQN implementation

•  based on a YACC grammar
–  first use of YACC outside mainstream compilers

•  grammar is simple
–  box model
–  just combine boxes in various ways:

concatenate, above/below, sub and superscript, sqrt, ...

 eqn: box | eqn box
 box: text | { eqn } | box over box | sqrt box
 | box sub box | box sup box | box from box to box | ...

•  YACC makes experimental language design easy

Pic: a language for pictures (line drawings)

•  new typesetter has more capabilities (costs more too: $50K in 1977)

•  can we use troff to do line drawings?

•  answer: invent another language, again a preprocessor
–  add simple line-drawing primitives to troff: line, arc, spline

•  advantages of text descriptions of pictures
–  systematic changes are easy, always have correct dimensions,
–  Pic has loops, conditionals, etc., for repetitive structures

Turing complete!

•  implemented with YACC and LEX
–  makes it easy to experiment with syntax
–  human engineering:

free-form English-like syntax
implicit positioning: little need for arithmetic on coordinates

Pic examples

.PS!
arrow "input" above!
box "process"!
arrow "output" above!
.PE

Pic examples
.PS!
V: arrow from 0,-1 to 0,1; " voltage" ljust at V.end!
L: arrow from 0,0 to 4,0; " time" ljust at L.end!
for i = 1 to 399 do X!
 j = i+1!
 line from (L + i/100, sin(i/10) / 3 + sin(i/20) / 2 !
 + sin(i/30) / 4) to (L + j/100, sin(j/10) / 3 !
 + sin(j/20) / 2 + sin(j/30) / 4)!
X!
.PE!

Markup languages

•  each of these languages has its own fairly natural notation
–  doesn’t work as well when force everything into one notation
–  but also can be hard to mix, e.g., equations in diagrams in tables

•  TEX/LATEX:
–  “math mode” is a different language
–  tables are mostly the same as underlying language
–  there are no drawings (?)

•  XML (eXtensible Markup Language) is a meta-language for markup
–  a text-only language for describing grammar and vocabularies of other

markup languages that deal with hierarchical textual data
–  a notation for describing trees
–  internal nodes are elements; leaves are Unicode text
–  element: data surrounded by markup that describes it

•  XML vocabularies put everything into a single notation
–  except for the specific tags and attributes
–  bulky, inconvenient, but uniform

XML vocabularies and namespaces

•  a vocabulary is an XML description for a specific domain

–  Schema
–  XHTML
–  RSS (really simple syndication)
–  SVG (scalable vector graphics)
–  MathML (mathematics)
–  EPUB (electronic book format)
–  Android screen layout
–  ...

•  namespaces
–  mechanism for handling name collisions between vocabularies
 <ns:some_tag> ... </ns:some_tag>
 <ns2:some_tag> ... </ns2:some_tag>

MathML examples
•  Firefox 28.0

•  Safari 6.1.3

•  EQN

Input is not fit for humans:

<mn>4</mn>
 <mo>⁢</mo>
 <mi>a</mi>
 <mo>⁢</mo>
 <mi>c</mi>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn>
 <mo>⁢</mo>
 <mi>a</mi>
 </mrow>
 </mfrac>
 </mrow>
</math>

<mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mo form="prefix">−</mo>
 <mi>b</mi>
 <mo>±</mo>
 <msqrt>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>
 <mo>−</mo>

AMPL: A big DSL that got bigger

•  a language and system for
–  describing optimization problems in a

uniform, natural way
–  compiling descriptions into form needed by

solver programs
–  controlling execution of solvers
–  displaying results in problem terms

“word problem”

algebraic specification
(model)

modeling language
(AMPL)

AMPL translator

intermediate form
(sparse matrix)

Optimization program
(solver)

answers

data

Robert Fourer
David Gay
Brian Kernighan

Cost minimization: a diet model
•  Find a minimum-cost mix of TV dinners that satisfies requirements
on the minimum and maximum amounts of certain nutrients.

•  Given:
F, a set of foods
N, a set of nutrients
aij = amount of nutrient i in a package of food j
cj = cost of package of food j, for each j ∈ F
fj

- = minimum packages of food j, for each j ∈ F
fj

+ = maximum packages of food j, for each j ∈ F
ni

- = minimum amount of nutrient i, for each i ∈ N
ni

+ = maximum amount of nutrient i, for each i ∈ N
•  Define variables:

Xj = packages of food j to buy, for each j ∈ F
•  Minimize: ∑j ∈ F cj Xj
•  Subject to:

ni
- ≤ ∑j ∈ F aij Xj ≤ ni

+, for each i ∈ N
fj

- ≤ Xj ≤ fj
+, for each j ∈ F

AMPL version of the diet model

set FOOD;
set NUTR;

param amt {NUTR,FOOD} >= 0;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize total_cost: sum {j in FOOD} cost[j] * Buy[j];

subject to diet {i in NUTR}:
 n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

Diet data:
set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;
param amt (tr):
 A C B1 B2 :=
 BEEF 60 20 10 15
 CHK 8 0 20 20
 FISH 8 10 15 10
 HAM 40 40 35 10
 MCH 15 35 15 15
 MTL 70 30 15 15
 SPG 25 50 25 15
 TUR 60 20 15 10 ;
param: cost f_min f_max :=
 BEEF 3.19 0 100
 CHK 2.59 0 100
 FISH 2.29 0 100
 HAM 2.89 0 100
 MCH 1.89 0 100
 MTL 1.99 0 100
 SPG 1.99 0 100
 TUR 2.49 0 100 ;
param: n_min n_max :=
 A 700 20000
 C 700 20000
 B1 700 20000
 B2 700 20000 ;

Running AMPL:

$ ampl
ampl: model diet.mod;
ampl: data diet.dat;
ampl: solve;
MINOS 5.4: optimal solution found.
6 iterations, objective 88.2
ampl: display Buy;
Buy [*] :=
BEEF 0
 CHK 0
FISH 0
 HAM 0
 MCH 46.6667
 MTL 0
 SPG 0
 TUR 0
;

AMPL: moderately successful

•  a big frog in quite a small pond
–  widely used optimization tool
–  taught in courses
–  supports a small company (~5 employees)

•  language started out purely declarative
•  gradually has added all the trappings of programming languages

–  conditionals
–  loops
–  functions/procedures

•  but with odd, irregular and unconventional syntax

Why languages succeed

•  solve real problems in a clearly better way

•  culturally compatible and familiar
–  familiar syntax helps (e.g., C-like)
–  easy to get started with
–  portable to new environments

•  environmentally compatible
–  don’t have to buy into an entire new environment to use it
–  e.g., can use standard tools and link to existing libraries
–  open source, not proprietary

•  weak competition
•  good luck

Why languages fail to thrive

•  niche or domain disappears

•  poor engineering
–  too big, too complicated, too slow, too late
–  incompatible with environments

•  poor philosophical choices
–  ideology over functionality
–  single programming paradigm
–  too "mathematical"
–  too different, too incompatible

