Domain-specific languages

- also called application specific languages, little languages

* narrow domain of applicability

- not necessarily programmable or Turing-complete
- often declarative, not imperative

- sometimes small enough that you could build one yourself

- examples:
- regular expressions
- shell, Awk
- XML, HTML, Troff, (LA)TEX, Markdown: markup languages
- SQL: database access
- R: statistics
- AMPL: mathematical optimization

Example: Markup / document preparation languages

* illustrates topics of 333 in a different setting
- tools
- language design (good and bad); notation
- evolution of software systems; maintenance
- personal interest, research area for 10-20 years, heavy use in books

- examples:
- roff and related early formatters
- nroff (Unix man command still uses it)
- troff
- TEX
- HTML, Markdown, etc.

Unix document preparation: *roff

* text interspersed with formatting commands on separate lines
.Sp 2
.in 5
This is a paragraph ..
- originally just ASCII output, fixed layout, single column
- nroff: macros, a event mechanism for page layout (Turing complete)
* troff: version of nroff for phototypesetters
- adds features for size, font, precise positioning, bigger character sets
- originally by Joe Ossanna (~1972); inherited by BWK ~1977
- photypesetter produces output on photographic paper or film
- first high-quality output device at a reasonable price (~$15K)
- predates laser printers by 5-10 years
- predates Postscript (1982) by 10 years, PDF (1993) by 21 years
- klunky, slow, messy, expensive media
- complex program, complex language
- language reflects many of the weirdnesses of first typesetter
- macro packages make it usable by mortals for standard tasks
* troff + phototypesetter enables book-quality output
- Elements of Programming Style, Software Tools, K&R, ...

Extension to complex specialized material

- mathematics
- called "penalty copy” in the printing industry

* tables

- drawings

- graphs

- references
* indexes

- efc.

- at the time, done by hand composition
- not much better than medieval technology

- Bell Labs authors writing papers and books with all of these
- being done by manual typewriters
- how to mechanize the production

EQN: alanguage for typesetting mathematics

- BWK, with Lorinda Cherry ~1974

- idea: a language that matches the way mathematics is spoken
aloud

* translate that into troff commands
- since the language is so orthogonal, it wouldn't fit directly
- and there isn't room anyway, since program has to be less than 65KB
- troff is powerful enough

- use a pipeline: eqn | troff

- math mode in TEX (1978) inspired by EQN

EQN examples

X sup 2 + y sup 2 = z sup 2 x2+y2=22

f(t) = 2 pi int sin (omega t) dt

f(¢) =27rfsin (wt) dt

lim from {x -> pi / 2} (tan x) inf

lim (tan x) =o0
x—/2

x = {-b +- sqrt {b sup 2 — 4ac} over 2a }

_ —b+~/b2 —4ac
2a

X

EQN implementation

- based on a YACC grammar
- first use of YACC outside mainstream compilers

- grammar is simple
- box model

- just combine boxes in various ways:
concatenate, above/below, sub and superscript, sqrt, ...

eqn: box | eqn box

box: text | { eqn } | box over box | sqrt box
| box sub box | box sup box | box from box to box | ...

- YACC makes experimental language design easy

Pic: alanguage for pictures (line drawings)

- new typesetter has more capabilities (costs more too: $50K in 1977)
- can we use troff to do line drawings?

- answer: invent another language, again a preprocessor
- add simple line-drawing primitives to troff: line, arc, spline

- advantages of text descriptions of pictures
- systematic changes are easy, always have correct dimensions,

- Pic has loops, conditionals, etc., for repetitive structures
Turing completel

- implemented with YACC and LEX
- makes it easy to experiment with syntax
- human engineering:
free-form English-like syntax
implicit positioning: little need for arithmetic on coordinates

Pic examples

.PS
arrow "input"” above
box "process"

arrow "output" above
.PE

input

.-

Proccss

output

Pic examples

.PS
V: arrow from 0,-1 to 0,1; " voltage" ljust at V.end
L: arrow from 0,0 to 4,0; "
for i = 1 to 399 do X
j = i+l
line from (L + i/100, sin(i/10) / 3 + sin(i/20) / 2
+ sin(i/30) / 4) to (L + j/100, sin(j/10) / 3
+ sin(j/20) / 2 + sin(j/30) / 4)

time" ljust at L.end

A voltage

A /
SATADNE

PN

Markup languages

- each of these languages has its own fairly natural notation
- doesn't work as well when force everything into one notation
- but also can be hard to mix, e.g., equations in diagrams in tables
- TEX/LATEX:
- "math mode" is a different language
- tables are mostly the same as underlying language
- there are no drawings (?)
* XML (eXtensible Markup Language) is a meta-language for markup

- a text-only language for describing grammar and vocabularies of other
markup languages that deal with hierarchical textual data

- a notation for describing trees
- internal nodes are elements; leaves are Unicode text
- element: data surrounded by markup that describes it
- XML vocabularies put everything into a single notation
- except for the specific tags and attributes
- bulky, inconvenient, but uniform

XML vocabularies and namespaces
- a vocabulary is an XML description for a specific domain

- Schema

- XHTML

- RSS (really simple syndication)
- SVG (scalable vector graphics)
- MathML (mathematics)

- EPUB (electronic book format)
- Android screen layout

* hamespaces
- mechanism for handling name collisions between vocabularies
<ns:some tag> ... </ns:some_tag>
<ns2:some_tag> ... </ns2:some_tag>

MathML examples
- Firefox 28.0

- Safari 6.1.3

- EQN

—b+Vb:—4dac
X =
2a
b +Vb2_4ac
X =
| 2 a

_ —b+/b2 —4ac
x_-
2a

Input is not fit for humans:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo form="prefix">8−</mo>
<mi>b</mi>
<mo>±</mo>
<msqrt>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>∓</mo>

<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>
</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
</math>

AMPL: A big DSL that got bigger

* a language and system for

- describing optimization problems in a
uniform, natural way

- compiling descriptions into form needed by
solver programs

- controlling execution of solvers
- displaying results in problem terms

AMPL

A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING

) @

Robert Fourer
David Gay
Brian Kernighan

ROBERT FOURER DAVID M. GAY BRIAN W. KERNIGHAN

“word problem”

|

algebraic specification
(model)

|

modeling language
(AMPL)

l

AMPL translator

l

intermediate form
(sparse matrix)

l

Optimization program|
(solver)

l

answers

data

Cost minimization: a diet model

* Find a minimum-cost mix of TV dinners that satisfies requirements
on the minimum and maximum amounts of certain nutrients.
- Given:
F, a set of foods
N, a set of nutrients
a; = amount of nutrient i in a package of food |
¢; = cost of package of food j, for each jEF
f;~ = minimum packages of food j, for each j € F
f;" = maximum packages of food j, for each j€F
n,” = minimum amount of nutrient i, for eachi €N
n = maximum amount of nutrient i, for eachi €N

* Define variables:

X; = packages of food j o buy, for each jEF
* Minimize: Jier ¢ X
- Subject to:

n < Yiera; X;¢n’, foreachieN

fi <X« fJ-+, for each jEF

AMPL version of the diet model

set FOOD;
set NUTR;

param amt {NUTR,FOOD} >= O0;

param cost {FOOD} > O;

param £ min {FOOD} >= 0;

param f max {j in FOOD} >= f min[]j];
param n_min {NUTR} >= 0;

param n max {i in NUTR} >= n min[i];

var Buy {Jj in FOOD} >= f min[j], <= £ max[]];
minimize total cost: sum {j in FOOD} cost[j] * Buyl[]j]:’

subject to diet {i in NUTR}:
n min[i] <= sum {j in FOOD} amt[i,]j] * Buy[]j] <= n max[i];

Diet data:

set NUTR := A Bl B2 C ;

set FOOD BEEF CHK FISH HAM MCH MTL SPG TUR ;

param amt (tr):

A C Bl B2 :=

BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15

TUR 60 20 15 10 ;
param: cost f min f max :=
BEEF .19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;
param: n min n max :=
A 700 20000
C 700 20000
Bl 700 20000

B2 700 20000 ;

Running AMPL.

$ ampl
ampl: model diet.mod;
ampl: data diet.dat;
ampl: solve;

MINOS 5.4: optimal solution found.
6 iterations, objective 88.2
ampl: display Buy;

Buy [*] :=

BEEF
CHK
FISH
HAM
MCH 4
MTL
SPG
TUR

.6667

O O O o0 O O O ©O

AMPL: moderately successful

- a big frog in quite a small pond
- widely used optimization tool
- taught in courses
- supports a small company (~5 employees)

- language started out purely declarative

- gradually has added all the trappings of programming languages
- conditionals
- loops
- functions/procedures

- but with odd, irregular and unconventional syntax

Why languages succeed

- solve real problems in a clearly better way

* culturally compatible and familiar
- familiar syntax helps (e.qg., C-like)
- easy to get started with
- portable to new environments

- environmentally compatible
- don't have to buy into an entire new environment to use it
- e.g., can use standard tools and link to existing libraries
- open source, hot proprietary

- weak competition
- good luck

Why languages fail to thrive

* niche or domain disappears

* poor engineering
- too big, too complicated, too slow, too late
- incompatible with environments

- poor philosophical choices
- ideology over functionality
- single programming paradigm
- too "mathematical”
- too different, foo incompatible

