
Java history

•  invented mainly by James Gosling ([formerly] Sun Microsystems)

•  1990: Oak language for embedded systems
–  needs to be reliable, easy to change, retarget
–  efficiency is secondary
–  implemented as interpreter, with virtual machine

•  1993: renamed "Java"; use in a browser instead of a microwave
–  Java Virtual Machine (JVM) runs in browser

•  1994: Netscape supports Java in their browser
–  enormous hype: a viable threat to Microsoft

•  1997-2002: Sun sues Microsoft multiple times over Java
–  MSFT found guilty of anti-competitive actions; mostly settled by 4/04

•  significant language changes over time
–  Java 1.5 (9/04) generics, auto box/unbox, for loop, annotations, ...
–  Java 1.8 (3/14) lambdas / closures

Java vs. C and C++
•  no preprocessor

–  import instead of #include
–  constants use static final declaration

•  C-like basic types, operators, expressions
–  sizes, order of evaluation are specified

•  object-oriented
–  everything is part of some class
–  objects all derived from Object class
–  klunky mechanisms for converting basic <-> object

•  references instead of pointers for objects
–  null references, garbage collection, no destructors
–  == is object identity, not content identity

•  all arrays are dynamically allocated
int[] a; // a is now null
a = new int[100];

•  strings are more or less built in
•  C-like control flow, but

–  labeled break and continue instead of goto
–  exceptions: try {…} catch(Exception) {…} finally {…}

•  threads for parallelism within a single process

Basic data types

•  Java tries to specify some of the unspecified or undefined
parts of C and C++

•  basic types:
–  boolean true / false (no conversion to/from int)
–  byte 8 bit signed
–  char 16 bit unsigned (Unicode character)
–  int 32 bit signed
–  short, long, float, double

•  String is sort of built-in (an Object)
–  "..." is a String
–  holds 16-bit Unicode chars, NOT bytes
–  does NOT have a null terminator; String.length() returns length
–  + is string concatenation operator; += appends
–  immutable: string operations make new strings

Unicode (www.unicode.org)

•  universal character encoding scheme
–  ~113,000 characters

•  UTF-16: 16 bit internal representation
–  encodes all characters used in all languages

numeric value, name, case, directionality, …
–  expansion mechanism for > 216 characters

•  UTF-8: byte-oriented external form
–  variable-length encoding, self-synchronizing within a couple of bytes
–  ASCII compatible: 7-bit characters occupy 1 byte

 0bbbbbbb
 110bbbbb 10bbbbbb
 1110bbbb 10bbbbbb 10bbbbbb
 11110bbb 10bbbbbb 10bbbbbb 10bbbbbb

•  Java supports Unicode
–  char data type is 16-bit Unicode
–  String data type is 16-bit Unicode chars
–  \uhhhh is Unicode character hhhh (h == hex digit); use in "..." and '.'

Destruction & garbage collection
•  interpreter keeps track of what objects are currently in use
•  memory can be released when last use is gone

–  release does not usually happen right away
–  has to be garbage-collected

•  garbage collection happens automatically
–  separate low-priority thread does garbage collection

•  no control over when this happens
–  can set object reference to null to encourage it

•  no destructor (unlike C++)
–  can define a finalize() method for a class to reclaim other resources,
 close files, etc.
–  no guarantee that a finalizer will ever be called

•  garbage collection is a great idea
–  but this does not seem like a great design

Exceptions
•  C-style error handling

–  ignore errors -- can't happen
–  return a special value from functions, e.g.,

-1 from system calls like open(), NULL from library functions like fopen()
•  leads to complex logic

–  error handling mixed with computation
–  repeated code or goto's to share code

•  limited set of possible return values
–  extra info via errno and strerr: global data
–  some functions return all possible values

so no possible error return value is available for use
•  exceptions are the Java solution (also in C++, Python, …)
•  an exception indicates unusual condition or error
•  occurs when program executes a throw statement
•  control unconditionally transferred to catch block
•  if no catch in current function, passes to calling method
•  keeps passing up until caught or dealt with

–  ultimately caught by system at top level

try {…} catch {…}
•  a method can catch exceptions

public void foo() {
 try {
 // if anything here throws an IO exception
 // or a subclass, like FileNotFoundException
 } catch (IOException e) {
 // this code will be executed to deal with it
 } finally {
 // this is done regardless
 }

•  or it can throw them, to be handled by caller
•  a method must list exceptions it can throw

–  exceptions can be thrown implicitly or explicitly

public void foo() throws IOException {
 // if anything here throws any kind of IO exception
 // foo will throw an exception, to be handled by its caller
}

How exceptions help
public class cp2 {

 public static void main(String[] args) {
 int b;

 try {
 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]);
 BufferedInputStream bin = new BufferedInputStream(fin);
 BufferedOutputStream bout = new BufferedOutputStream(fout);

 while ((b = bin.read()) != -1)
 bout.write(b);
 bin.close();
 bout.close();
 } catch (IOException e) {
 System.err.println("IOException " + e);
 }
 }
}

Why exceptions?
•  reduced complexity

–  if a method returns normally, it worked
–  each statement in a try block knows that previous statements worked,

without explicit tests
–  if the try exits normally, all the code in it worked
–  error code is grouped in a single place

•  can't unconsciously ignore possibility of errors
–  have to at least think about what exceptions can be thrown

•  don't use exceptions for normal flow of control

•  don't use for "normal" unusual conditions
–  e.g., in.read() returns –1 for EOF instead of throwing an exception

–  should a file open that fails throw an exception?

Virtual functions
•  in Java, all functions are implicitly virtual
•  if a reference to a superclass type is really a reference to a
subclass object, a function call with that reference calls the
subclass function

•  polymorphism: proper function to call is determined at run-time
–  e.g., drawing Shapes in an array:

 draw(Shape[] sa) {
 for (int i = 0; i < sa.length; i++)

 sa[i].draw();
 }

•  virtual function mechanism automatically calls the right draw()
function for each object
–  a subclass may provide its own version of this function, which will be called

automatically for instances of that subclass
–  the superclass can provide a default implementation

•  the loop does not change if more subclasses of Shapes are added

Interfaces

•  an interface is like a class
•  declares a new data type
•  only declares methods (not implementations) and constants

–  methods are implicitly public!
–  constants are implicitly public static final!

•  any class can implement the interface
–  i.e., provide implementations of the interface methods
–  and can provide other methods as well
–  and can implement several interfaces

 class foo implements bar {!
 // implementation of bar methods!
 }!

•  the only way to simulate function pointers and function objects

Comparison interface for sorting
interface Cmp {
 int cmpf(Object x, Object y);
}
class Icmp implements Cmp { // Integer comparison
 public int cmpf(Object o1, Object o2) {
 int i1 = ((Integer) o1).intValue();
 int i2 = ((Integer) o2).intValue();
 if (i1 < i2) return -1;
 else if (i1 == i2) return 0;
 else return 1;
 }
}
class Scmp implements Cmp { // String comparison
 public int cmpf(Object o1, Object o2) {
 String s1 = (String) o1;
 String s2 = (String) o2;
 return s1.compareTo(s2);
 }
}
•  whole lot of casting going on
•  can't do an illegal cast, but don't find out till runtime

Sort function using an interface
 void sort(Object[] v, int left, int right, Cmp cf) {
 int i, last;

 if (left >= right) // nothing to do
 return;
 swap(v, left, rand(left,right));
 last = left;
 for (i = left+1; i <= right; i++)
 if (cf.cmpf(v[i], v[left]) < 0)
 swap(v, ++last, i);
 swap(v, left, last);
 sort(v, left, last-1, cf);
 sort(v, last+1, right, cf);
 }

 Integer[] iarr = new Integer[n];
 String[] sarr = new String[n];
 Quicksort.sort(iarr, 0, n-1, new Icmp());
 Quicksort.sort(sarr, 0, n-1, new Scmp());

Wrapper types
•  most library routines work only on Objects

–  don't work on basic types like int
•  have to "wrap" basic types in objects to pass to library functions,
store in Vectors, etc.
–  Character, Integer, Float, Double, etc.

•  wrappers also include utility functions and values

 Integer I = new Integer(123); // constructor
 int i = I.intValue(); // get value
 i = Integer.parseInt("123"); // atoi
 I = Integer.valueOf("123"); // …
 String s = I.toString();

 Double D = new Double(123.45);
 double d = D.doubleValue();
 d = Double.parseDouble("123.45"); // atof
 D = Double.valueOf("123.45"); // ...
 String s = D.toString();

double atof(String str) { return Double.parseDouble(str); }
System.out.println(Double.MAX_VALUE);

Boxing and unboxing

•  Java 1.5 autobox and unbox somewhat clean up this mess

 Integer I = 123; // no need for new Integer()
 int i = I; // no need for I.intValue()
 String s = I.toString();

 Double D = 123.45;
 double d = D;
 d = Double.parseDouble("123.45"); // atof
 D = Double.valueOf("123.45");
 s = D.toString();

Collections and collections framework
•  "collection" == container in C++, etc.

–  Set, List (includes array), Map
•  interfaces for standard data types

–  abstract data types for collections
–  can do most operations independently of real type
–  include standard interface for add, remove, size, member test, ...

•  implementations (concrete representations)
–  HashSet, TreeSet
–  ArrayList, LinkedList
–  HashMap, TreeMap

•  algorithms
–  standard algorithms like search and sort
–  work on any Collection of any type that provides standard operations like

comparison
–  "polymorphic"

•  iterators
–  uniform mechanism for accessing each element

Collections sort
•  ArrayList is an implementation of List

–  like Vector but better
–  adds some of its own methods, like get()

•  Collections.sort is a polymorphic algorithm
–  specific type has to implement Comparable

class qsort1 {
 public static void main(String[] argv) throws IOException {
 FileReader f1 = new FileReader(argv[0]);
 BufferedReader f2 = new BufferedReader(f1);
 String s;
 List al = new ArrayList();
 while ((s = f2.readLine()) != null)
 al.add(s);
 Collections.sort(al);
 for (int j = 0; j < al.size(); j++)
 System.out.println(al.get(j));
 }
}

Generics, for-each

•  generics tell compiler what type a Collection holds
–  compiler can do more type checking at compile time

•  for-each loop cleans up iterator code

 String s;
 List<String> al = new ArrayList<String>();
 while ((s = f2.readLine()) != null)
 al.add(s);
 Collections.sort(al);
 for (String j : al)
 System.out.println(j);

•  <?> as a type in a generic matches any type

•  <? extends T> matches any type that extends T
–  "bounded wildcard"

Interface example: map
•  interface defines methods for something
•  says nothing about the implementation
 interface Map
 void put(String name, String value);
 String get(String name);
 // ...
 }

•  classes implement it by defining functions
•  have to implement all of the interface
 class Hashmap implements Map {
 Hashtable h;
 Hashmap() { h = new Hashtable(); }
 void put(String name, String value) {h.put(name, value); }
 String get(String name) { return h.get(name); }

 class Treemap implements Map {
 RBTree t;
 Treemap() { t = new RBTree(); }
 void put(String name, String value) { … }
 String get(String name) { … }

Word frequency count: Java
public class freqhash {
 public static void main(String args[]) throws IOException {
 FileReader f1 = new FileReader(args[0]);
 BufferedReader f2 = new BufferedReader(f1);

 Map<String, Integer> hs = new HashMap<String,Integer>();
 String buf;
 while ((buf = f2.readLine()) != null) {
 String nv[] = buf.split("[]+");
 for (int i = 0; i < nv.length; i++) {
 Integer oldv = hs.get(nv[i]);
 if (oldv == null)
 hs.put(nv[i], 1);
 else
 hs.put(nv[i], oldv+1);
 }
 }
 for (String n : hs.keySet()) {
 Integer v = hs.get(n);
 System.out.println(n + " " + v);
 }
 }
}

Word frequency count: C++ STL
#include <iostream>
#include <map>
#include <string>

int main() {
 string temp;
 map<string, int> v;
 map<string, int>::const_iterator i;

 while (cin >> temp)
 v[temp]++;
 for (i = v.begin(); i != v.end(); ++i)
 cout << i->second << " " << i->first << "\n";
}

Sorting: Java v. C++
String s;
List<string> al = new ArrayList<string>();
while ((s = f2.readLine()) != null)
 al.add(s);
Collections.sort(al);
for (String j : al)
 System.out.println(j);

string tmp;
vector<string> v;
while (getline(cin, tmp))
 v.push_back(tmp);
sort(v.begin(), v.end());
copy(v.begin(), v.end(),
 ostream_iterator<string>(cout,"\n"));

