

CAS: Central Authentication Service

•  if your project requires users to log in with a Princeton netid
 don't ask users to send you their passwords at all,
 and especially not in the clear

•  OIT provides a central authentication service
–  the user visits your startup page
–  the user is asked to authenticate via OIT's service
–  the name and password are sent to an OIT site for validation
 (without passing through your code at all)
–  if OIT authenticates the user, your code is called

•  OIT web page about CAS:
 https://sp.princeton.edu/oit/sdp/CAS/!
 Wiki%20Pages/Home.aspx!
•  sample code:
 www.cs.princeton.edu/~bwk/public_html/CAS!

Authentication for projects (etc.)

•  PHP version
 <?php
 require 'CASClient.php';
 $C = new CASClient();
 $netid = $C->Authenticate();
 echo "Hello $netid"; // or other code
 ?>

•  Python version
 import CASClient, os
 C = CASClient.CASClient()
 netid = C.Authenticate()
 print "Content-Type: text/html\n"
 print "Hello %s" % netid # or other code

•  Java version
 CASClient casClient = new CASClient();
 String netid = casClient.authenticate();
 System.out.println("Content-type: Text/html\n");
 System.out.println("Hello " + netid);

Behind the scenes in the client libraries

•  your web page sends user to
 https://fed.princeton.edu/cas/login?!
 service=url-where-user-will-log-in!

•  CAS sends user back to the service url to log in
 with a parameter ticket=hash-of-something!

•  your login code sends this back to
 https://fed.princeton.edu/cas/validate?!
 ticket=hash&service=url…log-in

•  result from this is either 1 line with "no"
 or two lines with "yes" and netid!

Source code management systems

•  SVN, Git, Mercurial, Bazaar, Perforce, ...
•  for managing large projects with multiple people

–  work locally or across a network
•  store and retrieve all versions of all directories and files in a
project
–  source code, documentation, tests, binaries, ...

•  support multiple concurrent users
–  independent editing of files
–  merged into single version

•  highly recommended for COS 333 projects!
–  save all previous versions of all files so you can back out of a bad change
–  log changes to files so you can see who changed what and why
–  maintain consistency by resolving mediate conflicting changes made by

different users

Alternatives

•  Git
 http://git-scm.com/

•  SVN
 http://subversion.apache.org/

•  Bazaar
 http://bazaar-vcs.org

•  Mercurial
 http://www.selenic.com/mercurial

•  Perforce
 http://www.perforce.com

Basic sequence for all systems
•  create a repository that holds copies of your files

–  including all changes and bookkeeping info
•  each person checks out a copy of the files

–  "copy - modify - merge" model
–  get files from repository to work on

does not lock the repository
–  make changes in a local copy
–  when satisfied, check in (== commit) changes

•  if my changes don't conflict with your changes
–  system updates its copies with the revised versions
–  automatically merges edits on different lines
–  keeps previous copies

•  if my changes conflict with your changes
–  e.g., we both changed lines in the same part of file,
 checkin is not permitted
–  we have to resolve the conflict manually

Git

•  originally written by Linus Torvalds, 2005
•  distributed

–  no central server: every working directory is a complete repository
–  has complete history and revision tracking capabilities

•  originally for maintaining Linux kernel
–  lots of patches
–  many contributors
–  very distributed
–  dispute with BitKeeper (commercial system)
–  dissatisfaction with CVS / SVN

Basic Git sequences (git-scm.com/documentation, gitref.org)

cd project!
git init!
!makes .git repository
git add .!
git commit!
!makes a snapshot of current state
[modify files]
git add … [for new ones]!
git rm … [for dead ones]!
git commit!
git log --stat –summary!
git clone [url]!
 makes a copy of a repository

Basic sequence for SVN

•  do this once:
 svnadmin create repository
 [mkdir proj.dir & put files in it, or use existing directory]
 svn import proj.dir file:///repository -m 'initial repository'
 svn checkout file:///repository working.dir

•  create, edit files in working.directory
 cd working.dir
 ed x.c # etc.
 svn diff x.c
 svn add newfile.c

•  update the repository from the working directory
 svn commit # commit all the changes

Basic sequence, continued

•  when changes are committed, SVN insists on a log message
–  strong encouragement to record what change was made and why
–  can get a history of changes to one or more files
–  can run diff to see how versions of a file differ

•  can create multiple branches of a project

•  can tag snapshots for, e.g., releases

•  can be used as client-server over a network, so can do
distributed development
–  repository on one machine
–  users and their local copies can be anywhere

Networking overview

•  a bit of history

•  local area networks

•  Internet
–  protocols, …

•  network plumbing and software

Internet mechanisms
•  names for networks and computers

–  www.cs.princeton.edu, de.licio.us
–  hierarchical naming scheme
–  imposes logical structure, not physical or geographical

•  addresses for identifying networks and computers
–  each has a unique 32-bit IP address (IPv6 is 128 bits)
–  ICANN assigns contiguous blocks of numbers to networks (icann.org)
–  network owner assigns host addresses within network

•  DNS Domain Name System maps names /addresses
–  www.princeton.edu = 128.112.136.12
–  hierarchical distributed database
–  caching for efficiency, redundancy for safety

•  routing to find paths from network to network
–  gateways/routers exchange routing info with nbrs

•  protocols for packaging and transporting information, handling errors, ...
–  IP (Internet Protocol): a uniform transport mechanism
–  at IP level, all info is in a common packet format
–  different physical systems carry IP in different formats (e.g., Ethernet, wireless,

fiber, phone,...)
–  higher-level protocols built on top of IP for exchanging info like web pages, mail, …

Internet (IP) addresses
•  each network and each connected computer has an IP address
•  IP address: a unique 32-bit number in IPv4 (IPv6 is 128 bits)

–  1st part is network id, assigned centrally in blocks
(Internet Assigned Numbers Authority -> Internet Service Provider -> you)

–  2nd part is host id within that network
assigned locally, often dynamically

•  written in "dotted decimal" notation: each byte in decimal
–  e.g., 128.112.128.81 = www.princeton.edu

128 112 128 81

10000000 01110000 10000000 01010001

net part host on that net

Protocols
•  precise rules that govern communication between two parties
•  basic Internet protocols usually called TCP/IP

–  1973 by Bob Kahn *64, Vint Cerf
•  IP: Internet protocol (bottom level)

–  all packets shipped from network to network as IP packets
–  each physical network has own format for carrying IP packets (Ethernet, fiber, …)
–  no guarantees on quality of service or reliability: "best effort"

•  TCP: transmission control protocol
–  reliable stream (circuit) transmission in 2 directions
–  most things we think of as "Internet" use TCP

•  application-level protocols, mostly built from TCP
–  SSH, FTP, SMTP (mail), HTTP (web), …

•  UDP: user datagram protocol
–  unreliable but simple, efficient datagram protocol
–  used for DNS, NFS, …

•  ICMP: internet control message protocol
–  error and information messages
–  ping, traceroute

IP
•  unreliable connectionless packet delivery service

–  every packet has 20-40B header with
source & destination addresses,
time to live: maximum number of hops before packet is discarded (each gateway

decreases this by 1)
checksum of header information (not of data itself)

–  up to 65 KB of actual data
•  IP packets are datagrams:

–  individually addressed packages, like envelopes in mail
–  "connectionless": every packet is independent of all others
–  unreliable -- packets can be damaged, lost, duplicated, delivered out of

order
–  packets can arrive too fast to be processed
–  stateless: no memory from one packet to next
–  limited size: long messages have to be fragmented and reassembled

•  higher level protocols synthesize error-free communication from
IP packets

TCP: Transmission Control Protocol
•  reliable connection-oriented 2-way byte stream

–  no record boundaries
if needed, create your own by agreement

•  a message is broken into 1 or more packets
•  each TCP packet has a header (20 bytes) + data

–  header includes checksum for error detection,
–  sequence number for preserving proper order, detecting missing or

duplicates
•  each TCP packet is wrapped in an IP packet

–  has to be positively acknowledged to ensure that it arrived safely
otherwise, re-send it after a time interval

•  a TCP connection is established to a specific host
–  and a specific "port" at that host

•  each port provides a specific service
–  see /etc/services
–  FTP = 21, SSH = 22, SMTP = 25, HTTP = 80

•  TCP is basis of most higher-level protocols

Higher level protocols:
•  FTP: file transfer
•  SSH: terminal session
•  SMTP: mail transfer
•  HTTP: hypertext transfer -> Web
•  protocol layering:

–  a single protocol can't do everything
–  higher-level protocols build elaborate operations out of simpler ones
–  each layer uses only the services of the one directly below
–  and provides the services expected by the layer above
–  all communication is between peer levels: layer N destination receives

exactly the object sent by layer N source

connectionless packet delivery service
reliable transport service

application

physical layer

How information flows

Network programming
•  C: client, server, socket functions; based on processes & inetd
•  Java: import java.net.* for Socket, ServerSocket; threads
•  Python: import socket, SocketServer; threads
•  underlying mechanism (pseudo-code):
 server:

 fd = socket(protocol)
 bind(fd, port)
 listen(fd)
 fd2 = accept(fd, port)
 while (...)
 read(fd2, buf, len)
 write(fd2, buf, len)
 close(fd2)
client:
 fd = socket(protocol)
 connect(fd, server IP address, port)
 while (...)
 write(fd, buf, len)
 read(fd, buf, len)
 close(fd)

C TCP client
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

struct hostent *ptrh; /* host table entry */
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
sad.sin_family = AF_INET; /* internet */
sad.sin_port = htons((u_short) port);
ptrh = gethostbyname(host); /* IP address of server /
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);
ptrp = getprotobyname("tcp");
fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
connect(sd, (struct sockaddr *) &sad, sizeof(sad));

while (...) {
 write(fd, buf, strlen(buf)); /* write to server */
 n = read(fd, buf, N); /* read reply from server */
}
close(fd);

C TCP server
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
struct sockaddr_in cad; /* client adr */
memset((char *) &sad, 0, sizeof(sad));
sad.sin_family = AF_INET; /* internet */
sad.sin_addr.s_addr = INADDR_ANY; /* local IP adr */

sad.sin_port = htons((u_short) port);
ptrp = getprotobyname("tcp");
fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
bind(fd, (struct sockaddr *) &sad, sizeof(sad));
listen(fd, QLEN);

while (1) {
 fd2 = accept(sd, (struct sockaddr *) &cad, &alen));
 while (1) {
 read(fd2, buf, N);
 write(fd2, buf, N);
 }
 close(fd2);
}

Java networking classes
•  Socket

–  client side
–  basic access to host using TCP

reliable, stream-oriented connection
•  ServerSocket

–  server side
–  listens for TCP connections on specified port
–  returns a Socket when connection is made

•  DatagramSocket: UDP datagrams
–  unreliable packet service

•  URL, URLConnection
–  high level access: maps URL to input stream
–  knows about ports, services, etc.

•  import java.net.*

Client: copy stdin to server, read reply
•  uses Socket class for TCP connection between client & server

import java.net.*;
import java.io.*;

public class cli {

static String host = "localhost"; // or 127.0.0.1
static String port = "33333";

public static void main(String[] argv) {
 if (argv.length > 0)
 host = argv[0];
 if (argv.length > 1)
 port = argv[1];
 new cli(host, port);
}

•  (continued…)

Client: part 2
cli(String host, String port) { // tcp/ip version
 try {
 BufferedReader stdin = new BufferedReader(
 new InputStreamReader(System.in));
 Socket sock = new Socket(host, Integer.parseInt(port));
 System.err.println("client socket " + sock);
 BufferedReader sin = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 BufferedWriter sout = new BufferedWriter(
 new OutputStreamWriter(sock.getOutputStream()));
 String s;
 while ((s = stdin.readLine()) != null) { // read cmd
 sout.write(s); // write to socket
 sout.newLine();
 sout.flush(); // needed
 String r = sin.readLine(); // read reply
 System.out.println(host + " got [" + r + "]");
 if (s.equals("exit"))
 break;
 }
 sock.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Single-thread Java server
•  server: echoes lines from client
public class srv {
 static String port = "33333";
 public static void main(String[] argv) {
 if (argv.length == 0)
 new srv(port);
 else
 new srv(argv[0]);
 }
 srv port) { // tcp/ip version
 try {
 ServerSocket ss = new ServerSocket(Integer.parseInt(port));
 while (true) {
 Socket sock = ss.accept();
 System.err.println("server socket " + sock);
 new echo(sock);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Rest of server

class echo {
 Socket sock;
 echo(Socket sock) throws IOException {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(sock.getInputStream())); // from socket
 BufferedWriter out = new BufferedWriter(
 new OutputStreamWriter(sock.getOutputStream())); // to socket
 String s;
 while ((s = in.readLine()) != null) {
 out.write(s);
 out.newLine();
 out.flush();
 if (s.equals("exit"))
 break;
 }
 sock.close();
 }
}

•  this is single-threaded: only serves one client at a time

Serving multiple requests simultaneously
•  how can we serve more than one at a time?
•  in C/Unix, usually start a new process for each conversation

–  fork & exec: process is entirely separate entity
–  usually shares nothing with other processes
–  operating system manages scheduling
–  alternative: use a threads package (e.g., pthreads)

•  in Java, use threads
–  threads all run in the same process and address space
–  process itself controls allocation of time (JVM)
–  threads have to cooperate (JVM doesn't enforce this)
–  threads must not interfere with each other's data and use of time

•  Thread class defines two primary methods
–  start start a new thread
–  run run this thread

•  a class that wants multiple threads must
–  extend Thread
–  implement run()
–  call start() when ready, e.g., in constructor

Multi-threaded server
public class multisrv {
 static String port = "33333";

 public static void main(String[] argv) {
 if (argv.length == 0)
 multisrv(port);
 else
 multisrv(argv[0]);
 }
 public static void multisrv(String port) { // tcp/ip version
 try {
 ServerSocket ss =
 new ServerSocket(Integer.parseInt(port));
 while (true) {
 Socket sock = ss.accept();
 System.err.println("multiserver " + sock);
 new echo1(sock);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Thread part...
class echo1 extends Thread {
echo1(Socket sock) {
 this.sock = sock; start();
 }
 public void run() {
 try {
 BufferedReader in = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 BufferedWriter out = new BufferedWriter(new
 OutputStreamWriter(sock.getOutputStream()));
 String s;
 while ((s = in.readLine()) != null) {
 out.write(s);
 out.newLine();
 out.flush();
 System.err.println(sock.getInetAddress() + " " + s);
 if (s.equals("exit")) // end this conversation
 break;
 if (s.equals("die!")) // kill the server
 System.exit(0);
 }
 sock.close();
 } catch (IOException e) {
 System.err.println("server exception " + e);
 }
 }

Multi-threaded Python server
#!/usr/bin/python

import SocketServer
import socket
import string

class Srv(SocketServer.StreamRequestHandler):
 def handle(self):
 print "Python server called by %s" % (self.client_address,)
 while 1:
 line = self.rfile.readline()
 print "server got " + line.strip()
 self.wfile.write(line)
 if line.strip() == "exit":
 break

srv = SocketServer.ThreadingTCPServer(("",33333), Srv)
srv.serve_forever()

Node.js server

var net = require('net');!
var server = net.createServer(function(c){ !
 //'connection' listener!
 console.log('server connected');!
 c.on('end', function() {!
 console.log('server disconnected');!
 });!
 c.pipe(c);!
});!
server.listen(33333, function() { //'listening' listener
console.log('server bound');!

});!

