
Database systems

•  database: a structured collection of data
•  provides an abstract view of data

–  separated from how it’s stored in a file system
–  analogous to how file systems abstract from physical devices

•  uniform access to information
•  provides centralized control
•  can guarantee important properties

–  consistency
–  security
–  integrity

•  can reduce redundancy, provide speed, efficiency

CRUD

•  basic database operations:

•  Create
–  create a brand new record

•  Read
–  read/ retrieve an existing record

•  Update
–  change / modify / update all or part of an existing record

•  Delete
–  guess what

ACID

•  critical properties of a database system:

•  Atomicity
–  all or nothing: all steps of a transaction are completed
–  no partially completed transactions

•  Consistency
–  each transaction maintains consistency of whole database

•  Isolation
–  effects of a transaction not visible to other transactions until committed

•  Durability
–  changes are permanent, survive system failure
–  consistency guaranteed

Typical database system organization

network
connection

browser

DB client

DB server

HTTP

query

HTML

response

Types of database systems

•  ordinary files
–  sometimes ok, but this is not a database except in informal sense

e.g., doesn't guarantee the ACID properties
•  relational / SQL

–  MySQL, SQLite, Postgres, Oracle, DB2, …
–  tables, rows, attributes
–  very structured, organized

•  "NoSQL" (more accurately "non-relational")
–  MongoDB, CouchDB, ...
–  collections, documents, fields
–  more intuitive, more flexible for some things
–  don't provide all the mechanisms and guarantees of SQL databases
–  may run better on clusters of servers

•  key-value & column stores
–  Redis, Berkeley DB, memcached, BigTable, …

Relational Database Management Systems

•  e.g.: MySQL, Postgres, SQLite, Oracle, DB2, …
•  a database is a collection of tables
•  each table has a fixed number of columns

–  each column is an "attribute" common to all rows
•  and a variable number of rows

–  each row is a "record" that contains data

 isbn title author price
 1234 MySQL DuBois 49.95
 4321 TPOP K & P 24.95
 2468 Ruby Flanagan 79.99
 2467 Java Flanagan 89.99
 2466 Javascript Flanagan 99.99
 1357 Networks Peterson 105.00
 1111 Practical Ethics Singer 25.00
 4320 C Prog Lang K & R 40.00

Relational model
•  simplest database has one table holding all data

–  e.g., Excel spreadsheet
•  relational model: data in separate tables "related" by common
attributes
–  e.g., custid in custs matches custid in sales

•  schema: content and structure of the tables
 books

 isbn title author price
 custs

 custid name adr
 sales

 isbn custid date price qty
 stock
 isbn count
•  extract desired info by queries
•  query processing figures out what info comes from what tables,
extracts it efficiently

Sample database

•  books [isbn, title, author, price]
 1234 MySQL DuBois 49.95
 4321 TPOP K & P 24.95
 2468 Ruby Flanagan 79.99
 2467 Java Flanagan 89.99
•  custs [custid, name, adr]

 11 Brian Princeton
 22 Bob Princeton
 33 Bill Redmond
 44 Bob Palo Alto

•  sales [isbn, custid, date, price, qty]
 4321 11 2012-02-28 45.00 1
 2467 22 2012-01-01 60.00 10
 2467 11 2012-02-05 57.00 3
 4321 33 2012-02-05 45.00 1
•  stock [isbn, count]
 1234 100
 4321 20
 2468 5
 2467 0

Retrieving data from a single table
•  SQL ("Structured Query Language") is the standard language
for expressing queries
–  all major database systems support it

•  general format:

select column-names from tables where condition ;

select * from books;
select name, adr from custs;
select title, price from books where price > 50;
select * from books where author = "Flanagan";
select author, title from books where author like "F%";
select author, title from books order by author;
select author, count(*) from books group by author;
select author, count(*) as n from books group by author
 order by n desc;

•  result is a table

Multiple tables and joins
•  if desired info comes from multiple tables, this implies a
"join" operator to relate data in different tables
–  in effect join makes a big table for later selection

 select title, count from books, stock
 where books.isbn = stock.isbn;

 select * from books, sales
 where books.isbn = sales.isbn
 and books.author like "F%";

 select custs.name, books.title
 from books, custs, sales
 where custs.id = sales.custid
 and sales.isbn = books.isbn;

 select price, count(*) as count from books
 where author like 'F%'
 group by author order by count desc;

MySQL

•  open source (?) relational database system
 www.mysql.com

•  "LAMP"
–  Linux
–  Apache
–  MySQL
–  P*: Perl, Python, PHP

•  command-line interface:
–  connect to server using command interface
 mysql –h publicdb -u bwk –p

–  type commands, read responses
 show databases;
 use bwk;
 show tables;
 select now(), version(), user();
 source cmdfile;

•  these commands are specific to MySQL

Creating and loading a table
•  create table

create table books (
 isbn varchar(15) primary key,
 title varchar(35), author varchar(20),
 price decimal(10,2)
);

•  load table from file (tab-separated text)

 load data local infile "books" into table books
 fields terminated by "\t"
 ignore 1 lines;

•  fields have to be left justified.
•  "terminated by" parameter must be a single character

–  not whitespace: multiple blanks are NOT treated as single separator

•  can also insert one record at a time
 insert into books values('2464','AWK','Flanagan','89.99');

Other statements

•  generic SQL
–  ought to be the same for all db systems
–  (though they are not always)

insert into sales
 values('1234','44','2008-03-06','27.95');

 update books set price = 99.99
 where author = "Flanagan";
 delete from books where author = "Singer";

•  MySQL-specific
–  other db's have analogous but different statements

 use bwk;
 show tables;
 describe books;
 drop tables if exists books, custs;

SQLite: an alternative (www.sqlite.org)

•  small, fast, simple, embeddable
–  no configuration
–  no server
–  single cross-platform database file

•  most suitable for
–  embedded devices (cellphones)
–  web sites with modest traffic & rapid processing

<100K hits/day, 10 msec transaction times
–  ad hoc file system or format replacement
–  internal or temporary databases

•  probably not right for
–  large scale client server
–  high volume web sites
–  gigabyte databases
–  high concurrency

•  "SQLite is not designed to replace Oracle.
 It is designed to replace fopen()."

Program interfaces to MySQL
•  original and basic interface is in C

–  about 50 functions
–  other interfaces build on this
–  most efficient access though query complexity is where the time goes
–  significant complexity in managing storage for query results

•  API's exist for most other languages
–  Perl, Python, PHP, Ruby, ...
–  C++, Java, …
–  can use MySQL from Excel, etc., with ODBC module

•  basic structure for API's is

 db_handle = connect to database
 repeat {

 stmt_handle = prepare an SQL statement
 execute (stmt_handle)
 fetch result

 } until tired
 disconnect (db_handle)

Python version

import sys, fileinput,

def main():!
 db = _mysql.connect(host="publicdb.cs.princeton.edu",!
 user="bwk”, db="bwk", passwd=”xx")!
 print "Enter query: ",!
 q = sys.stdin.readline()!
 while q != '':!
 db.query(q)!
 res = db.store_result()!
 r = res.fetch_row()!
 while len(r) != 0:!
 print r!
 r = res.fetch_row()!
 print "Enter query: ",!
 q = sys.stdin.readline()!
main()!

ODBC, JDBC, and all that
•  ODBC ("open database connectivity")

–  Microsoft standard interface between applications and databases
–  API provides basic SQL interface
–  driver does whatever work is needed to convert
–  underlying database has to provide basic services
–  used for applications like Excel, Visual Basic, C/C++, ...
–  drivers exist for all major databases
–  makes applications relatively independent of specific database being used

•  JDBC is the same thing for Java
–  passes calls through to ODBC drivers or other database software

mysql oracle postgres

drv drv drv

Excel PHP
ODBC
API

MySQL access from Java (Connector/J JDBC package)
import java.sql.*;

public class mysql {
 public static void main(String args[]) {
 String url = "jdbc:mysql://publicdb.cs.princeton.edu/bwk";
 try {
 Class.forName("com.mysql.jdbc.Driver");
 } catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: " + e.getMessage());
 }
 try {
 Connection con = DriverManager.getConnection(url, "bwk", ”xx");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("select * from books");
 while (rs.next())
 System.out.println(rs.getString("title") + " "
 + rs.getString("author"));
 stmt.close();
 con.close();
 } catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
 }
 }
}

SQL injection

•  one of the most common attacks on web servers
•  malicious SQL statements within queries
 can reveal database contents
 and perhaps modify contents or do other damage

•  if text from a form is handed directly to SQL engine,
 the database is vulnerable

 select * from books where author = 'something from a form';

 select * from books where author = 'x';
 update books set price = $1.00 where author like 'K%'; --':

Defenses

•  always watch out for this
•  don't try to roll your own with regular expressions

–  it's too hard to get it right
•  use parameterized queries

–  query is processed before insertion

cmd = "update people set name=%s where id=%s"
db.execute(cmd, (name, id))

•  details vary among systems (e.g., %s for MySQL, ? for SQlite)

•  Django and other frameworks generally do this for you

•  www.unixwiz.net/techtips/sql-injection.html
•  www.bobby-tables.com

Database design
•  two different possible table structures:

books
isbn title author price

booktitle, bookauthor, bookprice
isbn title
isbn author
isbn price

•  they need different SQL queries:
 select title, author, price from books;
 select title, author, price
 from booktitle, bookauthor,bookprice
 where booktitle.isbn = bookauthor.isbn
 and bookauthor.isbn = bookprice.isbn;
•  most of the program should be independent of the specific table
organization
–  shouldn't know or care which one is being used
 getList(title, author, price)

"NoSQL" databases

•  intended for scalability, performance
–  can be distributed easily

•  may not have fixed schema
–  easier to reorganize or augment data organization than with SQL

•  no join operator: you have to do it yourself
•  may not guarantee ACID properties

–  "eventually consistent" instead
•  no standardization

–  different access methods for different db's

MongoDB example (from flaskr)

from%pymongo%import%Connection%
db%=%Connection()['dbfile']%
blog%=%db['blog']%

def%show_entries():%
%%%%entries%=%[dict(title=cur['title'],%text=cur['text'])%%
%%%%%%%%%%%%%%%%%%%%%%%for%cur%in%blog.find()]%
%%%%return%render_template('show_entries.html',%entries=entries)%

def%add_entry():%
%%%%blog.insert({"title":%request.form['title'],%%
%%%%%%%%%%%%%%%%%"text":%request.form['text']})%#%BUG:%injection?%
%%%%return%redirect(url_for('show_entries'))%
def%clear():%
%%%%blog.remove()%
%%%%return%redirect(url_for('show_entries'))%

[see http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/

