Web [Application] Frameworks

conventional approach to building a web service
- write ad hoc client code in HTML, CSS, Javascript, ... by hand
- write ad hoc server code in [whatever] by hand
- write ad hoc access to [whatever] database system
so well understood that it's almost mechanical
web frameworks mechanize (parts of) this process
lots of tradeoffs and choices
- what client and server language(s)
- how web pages are generated
- how web events are linked to server actions
- how database access is organized (if at all)
can be a big win, but not always
- some are heavyweight
- easy to lose track of what's going on in multiple layers of generated software
- work well if your application fits their model, less well if it doesn't
examples:
- Ruby on Rails
- Django, Flask
- Google Web Toolkit
- Express / Node.js, Zend (PHP), ASP.NET (C#, VB.NET), and many others

Minimal Python server

import SocketServer
import SimpleHTTPServer

class Reply(SimpleHTTPServer.SimpleHTTPRequestHandler):
def do GET(self):
query arrives in self.path; return anything, e.g.,

self.wfile.write("query was %s\n" % self.path)

def main():
do initialization or whatever

SocketServer.ForkingTCPServer('', 8080),
Reply) .serve_ forever|()

main ()

Overview of frameworks

client-server relationship is stereotypical
- client sends requests using information from forms

- server parses request, dispatches proper function, which retrieves from
database, formats response, returns it

URL names encode requests

../login/name
../add/data_to_be_added

../delete/id_to_delete
server uses URL pattern to call proper function with right args

server usually provides structured & safer access to database

server may provide templating language for generating HTML
- e.g., replace {¢ foo %} with value of variable foo, etc.

framework may automatically generate an admin interface

Flask: Python-based microframework

simplest example?

import flask
app = flask.Flask(__name_)
@app.route('/"')
def hello():
return 'Hello’

app.run()

® OO0 Mozilla Firefox "

S python helloO.py

D~ x SHE.J o P

Sending form data

<form name=top id=top METHOD=POST
ACTION="http://localhost:5000">

<p> Name: <input type="text" name=Name id=Name >

<p> Netid: <input type="text" name=Netid id=Netid >

<p> Class:

<input type="radio" name=Class value="2015"> '15

<input type="radio" name=Class value="2016"> '16

<input type="radio" name=Class value="2017"> '17

<input type="radio" name=Class value="2018"> '18

<p> Courses:

<input type="checkbox" name=C126> 126
<input type="checkbox" name=C217> 217
<input type="checkbox" name=C226> 226

<p> <input type="submit" value="Submit"> <input type=reset>

Processing form data

from flask import Flask, request
app = Flask(___name_)

@Qapp.route('/', methods=['POST', 'GET'])
def hello():
g = "M
for (k,v) in request.form.iteritems():
s = "%s %$s=%s
" % (s, k, v)

return 'Hello
' + s

app.run()

Flaskr example: tiny blog site in Flask

+ part of the Flask documentation
- thanks to Armin Ronacher

- URL routing for login, logout, add record, clear all
+ €SS for styling
+ templates for merging variable content into layout

- uses SQLite3 to store data
- my version uses MongoDB

Python @ decorators

- a way to insert or modify code in functions and classes
@decorate
function foo(): ..

- compilation compiles foo, passes the object to decorate, which
does something and replaces foo by the result

- used in Flask to manage URL routing

@Qapp.route('/add’', methods=['POST'])
def add _entry():
blog.insert({"title": request.form['title'],
"text": request.form['text']})

return redirect(url for('show entries'))

@Qapp.route('/login', methods=['GET', 'POST']) ...
@Qapp.route('/clear’', methods=['GET', 'POST']) ...
@Qapp.route('/logout') ...

Django: more heavyweight Python-based framework

by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005)
a collection of Python scripts to

create a new project / site
- generates Python scripts for settings, etc.
- configuration info stored as Python lists . ‘

create a new application within a project Django Reinhart, 1910-1953
- generates scaffolding/framework for models, views

run a development web server for local testing

generate a database or build interface to an existing database
provide a command-line interface to application

create an administrative interface for the database

run automated tests

Conventional approach to building a web site

- user interface, logic, database access are all mixed together

import MySQLdb

print "Content-Type: text/html"

print

print "<html><head><title>Books</title></head>"

print "<body>"

print "<hl>Books</hl1l>"

print ""

connection = MySQLdb.connect (user="me', passwd='x', ='my db')

cursor = connection.cursor ()
cursor.execute ("SELECT name FROM books ORDER BY pub date DESC")
for row in cursor.fetchall():
print "<1i>%s</1i>" % row[O0]
print ""
print "</body></html>"
connection.close ()

Model-View-Controller (MVC) pattern

an example of a design pattern
model: the structure of the data
- how data is defined and accessed
view: the user interface

- what it looks like on the screen
- can have multiple views for one model

controller: how information is moved around
- processing events, gathering and processing data,
generating HTML, ...

separate model from view from processing so that when one
changes, the others need not

used with varying fidelity in
- Django, App Engine, Ruby on Rails, XCode Interface Builder, ...

not always clear where to draw the lines
- but trying to separate concerns is good

E P

. 1
o “ S
g Sl
. <

Django web framework s I
django
+ write client code in HTML, CSS, Javascript, ... |E——
- Django template language helps
separate form from content o oy
- write server code in Python -
- some of this is generated for you djangobook.com

write database access with Python library calls
- they are translated to SQL database commands

URLs on web page map mechanically to Python function calls
- reqgular expressions specify classes of URLs
- URL received by server is matched against regular expressions
- if a match is found, that identifies function to be called
and arguments to be provided to the function

Django automatically-generated files

generate framework/skeleton of code by program
three basic files:

models.py: database tables, etc.

views.py: business logic, formatting of output

urls.py: linkage between web requests and view functions
plus others for special purposes:

settings.py: db type, names of modules, ...

tests.py: test files

admin.py: admin info

templates: for generating and filling HTML info

Example database linkage

DATABASES = {
'default': {
'"ENGINE': 'django.db.backends.sqlite3’,
'"NAME': '/Users/bwk/django/sql3.db', ...

in settings.py

from django.db import models in models.py
class Post(models.Model):

title = models.TextField(5)

text = models.TextField()

BEGIN;
CREATE TABLE "blog post" (

generated by Django

"id" integer NOT NULL PRIMARY KEY,
"title" text NOT NULL,
"text" text NOT NULL

we

URL patterns

regular expressions used to recognize parameters and pass them
to Python functions

provides linkage between web page and what functions are called
for semantic actions

urlpatterns = patterns('',
(r'“time/$', current datetime),

(r'*time/plus/(\d{1,2})/$', hours ahead),
)

a reference to web page ../time/ calls the function

current datetime ()
tagged regular expressions for parameters: url ../time/plus/12
calls the function

hours ahead (12)

Templates for generating HTML

try to separate page design from code that generates it

Django has a specialized language for including HTML within code
- loosely analogous to PHP mechanism

latest posts.html (the template)

<html><head><title>Latest Posts</title></head>
<body>
<hl>Posts</hl>

% for post in post list %}
{{ post.title }} {{ post.text }}</1li>
{%$ endfor %}

</body></html>

Administrative interface

most systems need a way to modify the database even if initially
created from bulk data

- add / remove users, set passwords, ...

- add / remove records

- fix contents of records

often requires special code

Django generates an administrative interface automatically
- loosely equivalent to MyPhpAdmin

Google App Engine (since 4/08)

web application development framework
- analogous to Django
- template mechanism looks the same
- YAML for configuration
supports Python, Java, Go, PHP on server side
- and other languages that use the Java Virtual Machine?
- template language Jinja?2
Google provides the server
- run locally for testing & debugging, upload to appspot.com to deploy
restrictions on what server-side code can do
- non-relational database based on BigTable
- or a pseudo-relational database called GQL
- only static files can be stored on the server, read only access
- no sockets, threads, C-based modules, system calls, ...

Node.js server

var http = require('http');

http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, '127.0.0.1"); localhost: 1337

177 hupy/locathost:1337, x [[2)

Hello World

- Express framework

Google Web Toolkit (GWT) (May 2006)

write client (browser) code in Java

- widgets, events, layout loosely similar to Swing

test client code on server side

- test browser, or plugin for testing with real browser on local system
compile Java to Javascript and HTML/CSS

- [once it works]

use generated code as part of a web page

- generated code is browser independent (diff versions for diff browsers)
can use development environments like Eclipse

- can use JUnit for testing

strong type checking on source

- detect typos, etc., at compile time (unlike Javascript)

may not handle all Java runtime libraries

no explicit support for database access on server

- use whatever package is available

Assessment of Web Frameworks

- advantages

takes care of repetitive parts
more efficient in programmer time

automatically generated code is likely to be more reliable, have more
uniformity of structure

"DRY" (don't repeat yourself) is encouraged

"single point of truth"
information is in only one place so it's easier to change things

- potential negatives

automatically generated code
can be hard to figure out what's going on
can be hard to change if you don't want to do it their way

- systems are large and can be slow

- read Joel Spolsky's "Why I hate frameworks"
http://discuss. joelonsoftware.com/default.asp?joel.3.219431.12

Package managers

pip Python (pypi.python.org/pypi/pip)
pip install Django

apt-get Ubuntu Linux
apt-get install whatever

npm Node. js

npm install node
port Macports

port install ruby
brew Homebrew

brew install ruby

gem Ruby

Mashups: duct tape programming

*ProgrammableWeb APINews APIDirectory For APl Providers For Developers Listings Forum

ProgrammableWeb tracks the latest API
news to keep you on top of the API
economy

A7, uirectory Search

Search over 12,987 APIs
updated daily

Search Articles

Filter News Stories

Analysis 3D .Net
Brief Accessibility ActionScript

Browse by Category

Elsewhere on the Web Accounting AJAX Newest APIs

Howtq Acqo.unts C
Latest Mashups

100TB Adobe Air

18F AdSense

1Linx Amazon EC2
21Vianet Amazon Fire Phone

PW Research Center
New Relic Extends Real-Time Analytics Reach ok Pt prosonsation. Samall U APY reesarch for
into Mobile Apps

New Relic recently extended the reach of its application

performance monitoring tools into the realm of mobile computing O N ew Re liC

applications.

(programmableweb.com)

Assessment of Ajax-based systems

potential advantages
- can be much more responsive (cf Google maps)
- can off-load work from server to client
- code on server is not exposed
- continuous update of services
potential negatives
- browsers are not standardized
- Javascript code is exposed to client
- Javascript code can be bulky and slow
- asynchronous code can be tricky
- DOM is very awkward
- browser history not maintained without effort
what next? (changing fast)
- more and better libraries
- better tools and languages for programming
- better standardization?
- will the browser ever replace the OS?

