
Web technologies
•  client-server architecture
•  browser

–  sends requests to server, displays results
–  DOM (document object model): structure of page contents

•  forms / CGI (common gateway interface)
–  client side uses HTML/CSS, Javascript, XML, JSON, ...
–  server side code in Perl, PHP, Python, Ruby, Javascript, C, C++, Java, ...

extracts info from a form, creates a response, sends it back
•  client-side interpreters

–  Javascript, Java, Flash, Silverlight, HTML5 (animation, audio/video, …)
•  Ajax (asynchronous Javascript and XML)

–  update page content asynchronously (e.g., Google Maps, Suggest, Instant, …)
•  libraries, APIs, GUI tools

–  client-side Javascript for layout, interfaces, effects, easier DOM access, ...
JQuery, Bootstrap, Backbone, Underscore, Angular, React, ...

•  frameworks
–  integrated server-side systems for creating web applications

Rails (Ruby), Django (Python), Google Web Toolkit (Java), Express (Javascript), ...
•  databases
•  networks
•  hosting: Platform/Infrastructure as a service (PaaS, IaaS) [foaas]

Topics

Business logic:
 Java, Python,
 PHP, Ruby, Node,
 C++, Objective-C,
 Perl, Go, Swift, …

Toolkits:
 jQuery, Dojo,
 YUI, …

Web frameworks:
 GWT, Django,
 Flask, Zend, Rails,
 Cocoa, Express,
 …

Server:
 own machine,
 CS, OIT,
 AWS, Heroku,
 Appengine,
 own domain, …

GUI tools: Swing,
TkInter, jQueryUI,
Bootstrap, Angular
React, …

Devel Environ:
 shell++,
 Eclipse,
 Xcode, …

Repository:
 Git, Github
 SVN,
 Mercurial,
 Bazaar, …

Database:
 MySQL, SQLite,
 Postgres,
 MongoDB, Redis,
 …

Plumbing:
 TCP/IP,
 authentication, …

Wire format:
 XML, JSON,
 REST, SOAP, …

Web client:
 HTML, CSS
 Javascript
 Flash, …

Standalone app

World Wide Web
•  basic components

–  URL (uniform resource locator)
–  HTTP (hypertext transfer protocol)
–  HTML (hypertext markup language)
–  browser

•  embellishments in browser
–  helpers or plug-ins to display non-text content

pictures (e.g., GIF, JPEG), sound, movies, …
–  forms filled in by user

client encodes form information in URL or on stdout
server retrieves it from environment or stdin
usually with cgi-bin program
can be written in anything: Perl, PHP, shell, Java, ...

–  active content: download code to run on client
Javascript

 add-ons and extensions
Java applets
plug-ins (Flash, Quicktime, Silverlight, ...)
ActiveX

URL: Uniform Resource Locator

•  URL format
 protocol://hostname:port/filename

• hostname is domain name or IP address

• protocol or service
–  http, https, file, ftp, mailto, …
– 

• port is optional; defaults to 80 for HTTP

• filename is an arbitrary string, can encode many things
–  data values from client (forms)
–  request to run a program on server (cgi-bin)

•  encoded in very restricted character set
–  special characters as %hh (hex), space as +

HTTP: Hypertext transfer protocol

•  what happens when you click on a URL?

•  client sends request:
 GET url HTTP/1.0
 [other header info]
 (blank line)

•  server returns
 header info
 (blank line)
 HTML

–  server returns text that can be created as needed
–  can contain encoded material of many different types

uses MIME (Multipurpose Internet Mail Extensions)

GET url

HTML
client server

HTML: hypertext markup language

•  plain text description of content and markup for a page
•  markup describes structure and appearance
•  interpreted by a browser

–  browsers differ significantly in how they interpret HTML
•  tags bracket content
 <html><title>...</title><body>...</body></html>!
 <h1>...</h1> <p> bold!
 link to Google!
 <form … > ... </form>!
 <table … > .. .</table>!
 <script> alert(“hello”); </script>
•  and many, many more
•  tags can have attributes
 ...

Forms and CGI-bin programs
•  "common gateway interface"

–  standard way for client to ask the server to run a program
–  using information provided by the client
–  usually via a form

•  if target file on server is executable program,
–  e.g., in /cgi-bin directory
–  and if it has right permissions, etc.,

•  server runs it to produce HTML to send to client
–  using the contents of the form as input
–  server code can be written in any language
–  most languages have a library for parsing the input

•  CS department runs a cgi server
–  restrictions on what scripts can access and what they can do

•  OIT offers "Personal cPanel"
–  http://helpdesk.princeton.edu/kb/display.plx?ID=1123

HTML form hello1.html

<FORM
 ACTION="http://bwk.mycpanel.princeton.edu/cgi-bin/hello1.cgi"
 METHOD=GET>
<INPUT TYPE="submit" value="hello1: shell script, plain text">
</FORM>

<FORM
 ACTION="http://bwk.mycpanel.princeton.edu/cgi-bin/hello2.cgi"
 METHOD=POST>
<INPUT TYPE="submit" value="hello2: shell script, html">
</FORM>

[and a bunch of others]

Simple echo scripts hello[12].cgi
•  plain text… (hello1.cgi)

 #!/bin/sh
 echo "Content-type: Text/plain"
 echo
 echo Hello, world.

•  HTML … (hello2.cgi)

 #!/bin/sh
 echo 'Content-Type: text/html

 <html>
 <title> Hello2 </title>
 <body bgcolor=cyan>
 <h1> Hello, world </h1>'

 echo "<h2> It's `date` </h2>"

•  no user input or parameters but content can change (as in hello2)

HTML forms: data from users (surv0.html)

<html>
<title> COS 333 Survey </title>
<body>
<h2> COS 333 Survey </h2>
<form METHOD=GET ACTION=
 "http://bwk.mycpanel.princeton.edu/cgi-bin/surv2.py">
Name: <input type=text name=Name size=40> <p>
Password: <input type=password name=password> <p>
Class: <input type=radio name=Class value=17> '17
 <input type=radio name=Class value=16> '16
<p> CS courses:
<input type=checkbox name=c126> 126
<input type=checkbox name=c217> 217
<p> Experience?
<textarea name=Exp rows=3 cols=40 wrap></textarea>
<p>
<input type=submit> <input type=reset>
</form>
</body></html>

Retrieving info from forms (surv2.py)

•  HTTP server passes info to cgi program in environment variables
•  form data available in environment variable QUERY_STRING (GET)
or on stdin (POST)
#!/usr/bin/python

import os
import cgi
form = cgi.FieldStorage()

print "Content-Type: text/html"
print ""
print "<html>"
print "<title> COS 333 Survey </title>"
print "<body>"
print "<h1> COS 333 Survey </h1>"
for i in form.keys():
 print "%s = %s
" % (i, form[i].value)
print "<p>"
for i in os.environ.keys():
 print "%s = %s
" % (i, os.environ[i])

URL encoding of form data
•  how form data gets from client to server

–  http://hostname/restofpotentially/very/very/longline
–  everything after hostname is interpreted by server
–  usually /program?encoded_arguments

•  if form uses GET, encoded in URL format in QUERY_STRING
environment variable
–  limited length
–  visible in browser, logs, ...; can be bookmarked
–  usually used if no change of state at server

•  if form uses POST, encoded in URL format on stdin
(CONTENT_LENGTH bytes)
–  sent as part of message, not in URL itself
–  read from stdin by server, no limit on length
–  usually used if causes change of state on server

•  URL format:
–  keywords in keyword lists separated by +
–  parameters sent as name=value&name=value
–  funny characters encoded as %NN (hex)
–  someone has to parse the string

most scripting languages have URL decoders in libraries

CSS: Cascading Style Sheets
•  a language for describing appearance of HTML documents
•  separates structure (HTML) from presentation (CSS)
•  style properties can be set by declarations

–  for individual elements, or all elements of a type, or with a particular
name

•  can control color, alignment, border, margins, padding, …
 <style type="text/css" media="all">
 body { background: #fff; color: #000; }
 pre { font-weight: bold; background-color: #ffffcc; }
 a:hover { color: #00f; font-weight: bold;
 background-color: yellow; }
 </style>

•  can dramatically change appearance without changing structure
or content

•  style properties can be queried and set by Javascript

CSS syntax
•  optional-selector { property : value; property : value; … }!
•  selectors:

 HTML tags like h1, p, div, …
 .classname (all elements with that classname)
 #idname (all elements with that idname)
 :pseudo-class (all elements of that pseudo-class, like hover)

 h1 { text-align: center; font-weight: bold; color: #00f }!
 h2, h3 { margin:0 0 14px; padding-bottom:5px; color:#666; }!
 .big { font-size: 200%; }!

•  styles can be defined inline or in a file:
 <link rel="stylesheet" href="mystyle.css">!

•  can be defined in <style> ... </style> tag
•  can be set in a style="..." attribute in an element tag

 <p class=big style="color:red">!

Page layout with HTML and CSS

•  use HTML <div> tag for layout (not tables)
<html>
<body style="font-size: 24pt">
<div id="outer" style="color: #ff0000; background-color: #eeeeaa">
 <P> Here we are in the outer div
 <div id="inner1" style="color: #0000ff; background-color: #00ff00">
 <p> Here we are in inner div 1
 <p> Another paragraph
 </div> <!-- inner1 -->
 <div id="inner2"
 style="color: #0000ff;
 background-color: #00ff00">
 <p> Here we are in inner div 2
 </div> <!-- inner2 -->
 <p> and back in the outer
</div> <!-- outer -->
</body>
</html>

Cookies

•  HTTP is stateless: doesn't remember from one request to next
•  cookies intended to deal with stateless nature of HTTP

–  remember preferences, manage "shopping cart", etc.
•  cookie: one line of text sent by server to be stored on client

–  stored in browser while it is running (transient)
–  stored in client file system when browser terminates (persistent)

•  when client reconnects to same domain,
 browser sends the cookie back to the server

–  sent back verbatim; nothing added
–  sent back only to the same domain that sent it originally
–  contains no information that didn't originate with the server

•  in principle, pretty benign
•  but heavily used to monitor browsing habits, for commercial
purposes

Cookie crumbs
•  get a page from xyz.com

–  it contains
–  this causes a page to be fetched from DoubleClick.com
–  which now knows your IP address and what page you were looking at

•  DoubleClick sends back a suitable advertisement
–  with a cookie that identifies "you" at DoubleClick

•  next time you get any page that contains a doubleclick.com image
–  the last DoubleClick cookie is sent back to DoubleClick
–  the set of sites and images that you are viewing is used to

- update the record of where you have been and what you have looked at
- send back targeted advertising (and a new cookie)

•  this does not necessarily identify you personally so far
•  but if you ever provide personal identification,
 it can be (and will be) attached
•  defenses:

–  turn off all cookies; turn off "third-party" cookies
–  don't reveal information
–  clean up cookies regularly

PHP (www.php.com)

•  another scripting language for generating web pages
–  Rasmus Lerdorf (1997), Andi Gutmans, Zeev Suraski
–  originally Personal Home Pages, then PHP Hypertext Processor

•  sort of like Perl turned inside-out
–  text sent by server after PHP code within it has been executed

 <html>
 <title> PHP hello </title>
 <body>
 <h2> Hello from PHP </h2>
 <?php
 echo $_SERVER["SCRIPT_FILENAME"] . "
";
 echo $_SERVER["HTTP_USER_AGENT"] . "
";
 echo $_SERVER["REMOTE_ADDR"] . "
";
 echo $_SERVER["REMOTE_HOST"] . "
";
 phpinfo();
 ?>
 </body>
 </html>

Formatter in PHP
<?
$line = ''; $space = '';
$rh = STDIN;
while (!feof($rh)) {
 $d = rtrim(fgets($rh));
 if (strlen($d) == 0) {
 printline();
 print "\n";
 } else {
 #$words = split("/[\s]+/", $d); # doesn't work
 $words = explode(" ", $d);
 $c = count($words);
 for ($i = 0; $i < $c; $i++)
 if (strlen($words[$i]) > 0)
 addword($words[$i]);
 }
}
fclose($rh);
printline();

function addword($w) {
 global $line, $space;
 if (strlen($line) + strlen($w) > 60)
 printline();
 $line .= $space . $w;
 $space = ' ';
}
function printline() {
 global $line, $space;
 if (strlen($line) > 0)
 print "$line\n";
 $line = ''; $space = '';
}
the \n after the next line shows up in the output!! even if it's removed!!
?>

Formatter in Ruby
$space = ''
$line = ''

def addword(wd)
 printline() if $line.length()+wd.length()>60
 $line = "#{$line}#{$space}#{wd}"
 $space = ' '
end

def printline()
 print "#{$line}\n" if ($line.length() > 0)
 $line = $space = ''
end

while line = gets()
 line.chop # get rid of newline
 if (line =~ /^$/)
 printline()
 print "\n"
 else
 line.split().each {|wd| addword(wd) }
 end
end
printline()

