

333 Project

- a simulation of reality
- building a substantial system
- ingroups of 3 to 5 people

* "three-tier" system for any application you like

- 3 major pieces
- graphical user interface ("presentation layer")
- processing in the middle ("business logic")
- persistent storage / data management
- examples: many web-based services
- Amazon, Facebook, Instagram, ...
- news, information services, bots, mashups
- email, chat, search, code tools, maps, ...
- cellphone systems are often like this too
* your project
- make something of roughly this structure
- but smaller, simpler, defined by your interests

Some local examples

* Point

« PTX

- Events

- Rooms

- ICE

- TigerFinder

* Pursuit of Mappiness
- EasyPCE

* PrincetonCAT
- Find-A

- Tigerbook

UFOFims USGDVD Princeton+ TigerTrade

Rooms SCORE Helios

|c: %

TigerFinder 15 Guide

.!.w

Princeton Webmail Blackboard

Getting started

* right now, if not sooner

- think about potential projects; form a group
talk to TA's & bwk; look at previous projects;
look around you; check out the external project ideas page

- by Fri Mar 6: short meeting of group with bwk (earlier is desirable)
- to be sure your project idea is generally ok
- you should have one pretty firm consensus idea, not several vague ones

* Fri Mar 13: design document (before break)
- ~3-4 pages of text, pictures, etc. A template will be posted

- overview, initial web page, elevator speech
project name / title, paragraph on what it is, one person as project manager

- components & interfaces
major design choices: web vs. standalone, languages, tools, environment, ...
major pieces, how they fit together

- milestones: clearly defined pieces either done or not

- risks
- must be based on significant thought and discussion
- don't throw it together at the last minute

- all components of the project are graded

Process: organizing what to do

- you must use an orderly process or it won't work

- this is NOT a process:
- talk about the software at dinner
- hack some code together
- fest it a bit
- do some debugging
- fix the obvious bugs
- repeat from the top until the semester ends

* classic "waterfall" model: a real process
specification
requirements
architectural design
detailed design
coding
infegration
testing
delivery

- this is overkill for 333, but some process is essential ...

The academic software life cycle

requirements design build test debug

Informal process

- conceptual design

- roughly, what are we doing? make sketches, scenarios, screenshots
* requirements definition (“what")

- precise ideas about what it should do

- explore options & alternatives on paper

- specify more carefully with written docs

- this should not change a lot once you start

- architecture / design ("how")

- map out structure and appearance with diagrams, prototypes

- partition into major subsystems or components

- specify interactions and interfaces between components

- decide pervasive design issues: languages, environment, database, ...

- make versus buy decisions and what you can use from elsewhere

- resolve issues of connectivity, access to information, software, etc.
- implementation ("what by when")

- make prototypes; establish end to end connectivity

- get real users as early as possible

- deliver in stages, so that each does something and still works

- test as you go: if your system is easy to break, it gets a lower grade

Interfaces

* the boundary between two parts of a program

- a contract between the two parts

- what are the inputs and outputs?

* what is the transformation?

- who manages resources, especially memory and shared state?

* hide design & implementation decisions behind interfaces, so they
can be changed later without affecting the rest of the program

- database system, data representations and file formats
- specific algorithms
- visual appearance

+ "T wish we had done interfaces better" is one of the most
common comments

- less often: "We thought hard about the interfaces so it was easy to
make changes without breaking anything."

Choices (asmall and incomplete list)

- user interface
- browser, desktop, phone, game console, APT, ...
- HTML/CSS/LESS, Javascript, Flash, Jquery, Bootstrap, Swing, ...
- languages
- C++,Java, C#, Objective C, Perl, Python, PHP, Ruby, Javascript, ...
- server

- own machine, OIT, CS, Google AppEngine, Amazon AWS, Heroku, ...

 database
- MySQL, SQLite, Postgres, MongoDB, Redis, ...
- information exchange formats
- text, JSON, XML, REST, ...
- frameworks
- Django, Flask, Rails, Express, Google Web Toolkit, ...
- development environments
- XCode, Eclipse, Visual Studio, ...

"Make versus buy”

* you can use components and code from elsewhere
- copy or adapt open source

- overall project design has to be your own
+ so does selection and assembly of components
- so does the bulk of the work

- it's fine to build on what others have done
- identify what you have used, where it came from

Other ways to think about it

- "elevator pitch"

- what would you say if you were alone in an elevator with Bill Gates for
60 seconds?

short attention-grabbing description without big words but good buzzwords

5-7 slides for a 5-10 minute talk or a poster session

- what would be the titles and 2-3 points on each slide?

1 page advertisement

- what would be the main selling points?

- what would your web page look like?
talk and demo outline for the end of the semester

- what would you want working for the demo?

business plan

- how would you pitch it to a VC or Yagoosoftbook or at Princeton Pitch?
what does it do for who?
who would want it?
what's the competition?
what are the stages of evolution or major releases?
job talk / interview

- what did you do that's really cool?

Things to keep in mind

- project management

- everyone has to pull together, someone has to be in charge
architecture

- how do the pieces fit together?

- make it work like the product of a single mind but with multiple developers
"Good interfaces make good neighbors"?

user interface

- what does it look like?

- make it look like the product of a single mind
development

- everyone has to do a significant part of the coding
* quality assurance / testing

- make sure it always works
should always be able to compile and run it: fix bugs before adding features

- documentation

- internals doc, web page, advertising, presentation, final report, ...
* risks

- what could go wrong?

- what are you dependent on that might not work out?

Things to do from the beginning

- think about schedule
- keep a log of what you did and what you will do next (always current)
- plan for a sequence of stages

- do not build something that requires a "big bang" where nothing works
until everything works

- always be able to declare success and walk away
- simplify
- don't take on too big a job
- don't try to do it all at the beginning, but don't try to do it all at the end
- use source code control for everything
- Git or equivalent is mandatory
- leave lots of room for "overhead" activities
- testing: build quality in from the beginning
- documentation: you have to provide written material
- deliverables: you have to package your system for delivery
- changing your mind: decisions will be reversed and work will be redone
- disaster: lost files, broken hardware, overloaded systems, ...
- sickness: you will lose time for unavoidable reasons
- health: there is more to life than this project!

2015 Project Schedule

Feb

Mar

Apr

Su Mo

1
8
15
22
1
8
15
22
29

5
12
19
26

3
10
17

2
9
16
23
2
9
16
23
30

6
13
20
27

11
18

Tu

3
10
17
24

3
10
17
24
31

14
21

28

12
19

We

4
11
18
25

4
11
18
25

15
22

29

13
20

Th

5
12
19
26

5
12
19
26

2
9
16
23
30

14
21

Fr

6
13
20
27

6
13
20
27

3
10
17
24

15
22

Sa

7
14
21
28

7
14
21
28

11
18
25

16
23

<- you are here

initial talk with bwk

design doc before break
spring break (don't waste 1it)
weekly project meetings begin

project prototype
alpha test
beta test

demo days: project presentations
Dean's Date: all done

Some mechanics

groups of 3 to 5

- find your own partners
use Piazza for match-making
meet potential partners before or after class

- don't leave this to the end
TA's will be your first-level "managers"
- more mentoring and monitoring than managing
it's your project, not the TA's
meet with your TA every week after spring break
- everyone in the group must attend all of these meetings
be prepared
- what we accomplished
- what we didn't get done
- what we do plan to do next
these meetings are a graded component
- this is an attempt to make sure that you don't leave it all o the end

Scripting languages

- originally tools for quick hacks, rapid prototyping,
gluing together other programs, ...
- evolved intfo mainstream programming tools
- characteristics
- text strings as basic (or only) data type
- regular expressions (maybe built in)
- associative arrays as a basic aggregate type
- minimal use of types, declarations, etc.
- usually interpreted instead of compiled

- examples
- shell
- Awk
- Perl, PHP, Python, Ruby, Tcl, Lua, ...
- Javascript
- Visual Basic, (VB|W|C)Script, PowerShell

Shells and shell programming

- shell: a program that helps run other programs
- intfermediary between user and operating system
- basic scripting language
- programming with programs as building blocks
* an ordinary program, not part of the system
- it can be replaced by one you like better
- therefore there are lots of shells, reflecting history and preferences

- popular shells:

- sh Bourne shell (Steve Bourne, Bell Labs -> ... -> El Dorado Ventures)
emphasizes running programs and programmability
syntax derived from Algol 68
csh Cshell (Bill Joy, UC Berkeley -> Sun -> Kleiner Perkins)
interaction: history, job control, command & filename completion, aliases
more C-like syntax, but not as good for programming (at least historically)
ksh Korn shell (Dave Korn, Bell Labs -> AT&T Labs -> Google)
combines programmability and interaction
syntactically, superset of Bourne sh
provides all csh interactive features + lots more
bash GNU shell
mostly ksh + much of csh

tcsh
evolution of csh

Features common to Unix shells

- command execution
+ built-in commands, e.g., cd
+ filename expansion
* 2 [..]
* quoting
rm ' Careful Il
echo "It's now " date™"
- variables, environment
PATH=/bin:/usr/bin in ksh & bash
setenv PATH /bin:/usr/bin in (t)csh
- input/output redirection, pipes
prog <in >out, prog >>out
who | wc
slow.1 | slow.2 & asynchronous operation
- executing commands from a file
arguments can be passed to a shell file ($0, $1, etc.)
if made executable, indistinguishable from compiled programs

provided by the shell, not each program

Shell programming

- the shell is a programming language
- the earliest scripting language
- string-valued variables
- limited regexprs mostly for filename expansion

- control flow
- if-else
if cmd; then cmds; elif cmds; else cmds; fi (bash)
if (expr) cmds; else if (expr) cmds; else cmds; endif (csh)
- while, for
for var in list; do commands; done (bash)
foreach var (list) commands; end (bash)

- switch, case, break, continue, ...
* operators are programs
- programs return status: O == success, non-0 == various failures

- shell programming out of favor
- graphical interfaces
- scripting languages
e.g., system administration

setting paths, filenames, parameters, etc
now often in Perl, Python, PHP, ...

Shell programming

- shell programs are good for personal tools
- tailoring environment

- abbreviating common operations
(aliases do the same)

gluing together existing programs into new ones
prototyping

sometimes for production use

- e.g., configuration scripts

- But:
- shell is poor at arithmetic, editing
- macro processing is a mess
- quoting is a mess
- sometimes too slow
- can't get at some things that are really necessary

this leads to scripting languages

