C++ Overview (1)

COS320

Heejin Ahn
(heejin@cs.princeton.edu)

Introduction

Created by Bjarne Stroustrup

Standards
— C++98, C++03, C++07, C++11, and C++14

Features
— Classes and objects
— Operator overloading
— Templates
— STL (Standard Template Library)

Still widely used in performance-critical programs

This overview assumes that you know C and Java

from [3]

C++ is a Federation of Languages

C

— Mostly backward compatible with C
— Blocks, statements, preprocessor, built-in data types, arrays, pointers,

Object-Oriented C++
— Classes, encapsulation, inheritance, polymorphism, virtual functions, ...

Template C++
— Paradigm for generic programming

STL (Standard Template Library)
— Generic library using templates
— Containers, iterators, algorithms, function objects ...

Topics

* Today
— Heap memory allocation
— References
— Classes
— Inheritance

* Next time
— Operator overloading
— |/O streams
— Templates
— STL
— C++11

from [1]

Heap allocation: new and delete

new/delete is a type-safe alternative to malloc/free

new T allocates an object of type T on heap, returns pointer to it
— Stack *sp = new Stack();

new T[n] allocates array of T's on heap, returns pointer to first
— int *stk = new 1int[100];
— By default, throws exception if no memory

delete p frees the single item pointed to by p
— delete sp;

delete[] p frees the array beginning at p
— deletel[] stk;

new uses T's constructor for objects of type T
— need a default constructor for array allocation

delete uses T's destructor ~T()

use new/delete instead of malloc/free and never mix new/delete
and malloc/free

References

Controlled pointers

When you need a way to access an object, not a copy of it
In C, we used pointers

— 1int var = 3;

— 1int *pvar = &var;

— *pvar = 5; // now var ==

In C++, references attach a name to an object

— 1int var = 3;

— 1int &rvar = var;

— rvar = 5; // now var ==

Unlike pointers, you can’t define a reference without an object it
refers to

— int &x; (X)

Call-by-Reference

e Call-by-reference allows you to modify

arguments

— Now you can implement swap() function using

call-by-reference

void swap(int *x, int =*xy) {
int temp;
temp = *x;
X = XY,
*xy = temp;

swap (&a, &b);

void swap(int &x, int &y) {
int temp;

temp = x;
X =Y,
y = temp;

}

// pointers are implicit
swap(a, b);

Call-by-Value / Call-by-Reference

e Call-by-value
— By default, C/C++’s uses call-by-value
— If you pass an object using call-by-value, it causes the object to copy,
which is inefficient if it is large
e Call-by-reference
— In effect, you just pass the address of an object

— Call-by-const-reference additionally guarantees that the object will not
be modified during the call

— Java function call is similar to call-by-reference
* Java actually passes pointers internally

// call-by-reference // call-by-const-reference

void foo(Stack &s) { void foo(const Stack &s) {

3 3

Stack s; Stack s;

foo(s); // s can be modified in foo foo(s); // s is guaranteed to stay the same

Constness

* Way to say something is not modifiable
from [3]

char greeting[] = "Hello";

char *p = greeting; // non-const pointer, non-const data
const char *p = greeting; // non-const pointer, const data
char * const p = greeting; // const pointer, non-const data
const char * const p = greeting; // const pointer, const data

// Objects ‘a’ references or ‘b’ points to cannot be modified in this function
void foo(const Stack &a, const Stack *b);

// For class member member method
// This does not modify any status of ‘this’ object
void Stack::size() const;

from [1]

C++ Classes

class Thing {
public:
methods and variables accessible from all classes
protected:
methods and variables accessible from this class and child classes
rivate:
methods and variables only visible to this class

s

* defines a data type 'Thing’

— can declare variables and arrays of this type, create pointers to
them, pass them to functions, return them, etc.

* Object: an instance of a class variable
 Method: a function defined within the class

Stack Class in C++ from [1]

// simple-minded stack class
class Stack {
public:
Stack(); // constructor decl
int push(int);
int pop();
private: // default visibility
int stk[100];
int *sp;

3

Stack::Stack() { // constructor implementation
sp = stk;

3

int stack::push(int n) {
return *sp++ = n;

}

int stack::pop() {
return x--sp;

}

Stack s1, s2; // calls constructors
s1.push(1); // method calls

s2.push(s1.pop());

Constructors

class Student {
public:

Student(const string &n, double gpa) {
name = n;
this->gpa = gpa; // when a member variable name and a parameter name are the same

}

private:

3

string name;
double gpa;

Creates a new object

Construction includes initialization, so in may be parameterized like other
methods

— You can have multiple constructors with different parameters

If you don’t define any constructors, a default constructor will be
generated

— Student() {}
‘this’ is a pointer — so you need ‘->’ to refer to it

Constructors

class MyClass {

public:
MyClass(int arg) { .. }
MyClass(int argl, arg2) { .. }

3

// These call constructor and create objects on the stack
MyClass m1(100);

MyClass m2 = 100;

MyClass m3(100, 300);

// These call constructor and create objects on the heap
MyClass *m4 = new MyClass(100);
MyClass #*m5 = new MyClass(100, 300);

// You can omit () when you call the default constructor (if there is one)
MyClass m6; // equivalent to ‘MyClass m6();’
MyClass *m7 = new MyClass; // equivalent to ‘MyClass *m7 = new MyClass();’

‘explicit’ Keyword

 Compiler does automatic type-conversion for one-argument

constructors

— When this is a constructor:
* MyClass(int arg);

— This creates a temporary object and assigns it tom

e MyClass m = 5;

* Itis sometimes not what we want; to prevent this, use ‘explicit

keyword

— explicit MyClass(int arg);

)

// When this can be desirable
class string {
public:

string(const char *s);

};

string str = “Hello world”; // Good!

// When this is not desirable
class vector {
public:

vector(int size);

3

vector v = 5; // Oh no! Use ‘explicit’

Inline Functions

* Inlined functions are copied into callers” body when compiled
— Can prevent function call overhead

— Can increase code size

* ‘inline’ directive suggests the function is to be inlined

— Soinline functions should be available at compile time (not link time) —
they should exist in the same source file or any other header files

included

— But the final inlining decision is on compiler
e Member functions defined within a class have the same effect

class Student {
public:
void setGPA(double gpa) {
this->gpa = gpa;
3

3

class Student {
public:
void setGPA(double gpa);

s

inline void setGPA(double gpa) {
this->gpa = gpa;

3

TWO are |
Samel!

Accessors vs. Mutators

 Mutators can alter the state (= non-static
member variables) of an object, while
accessors cannot

e Accessors have ‘const’ at the end of the
signature

class Student {
public:

void setGPA(double gpa) { this->gpa = gpa; } // mutator
double getGPA() const { return gpa; } // accessor

Initializer Lists

class Student {
public:
// This calls default constructor for string
// first and then assigns new string ‘n’ to
// it again
Student(const string &n, double gpa) {
name = n;
this->gpa = gpa;
}
private:
string name;
double gpa;
s

class Student {
public:
// This calls constructor for string only
// once
Student(const string &n, double gpa)
: name(n), gpa(gpa) {}

private:
string name;
double gpa;
}s

Initialization lists are more efficient
— Only call constructors once

— Difference is small for primitive data types

You have to use initializer lists for some variables
— Class objects that do not have default (= no argument) constructors

— Reference variables

* They cannot be created without the target they refer to

Default Parameters

» Specifies default values for function
parameters

* Included in the function declaration

from [2]

void printInt(int n, int base=10);

printInt(50); // equivalent to ‘printInt(5, 10);’, outputs 50
printInt(50, 8); // outputs 62 (50 in octal)

from [2]

The Big Three

Copy Constructor
— MyClass(const MyClass &rhs)
— Special constructor to construct a new object as a copy of the same type of object

operator=
— operator=(const MyClass &rhs)
— Copy assignment operator
— Applied to two already constructed objects

Destructor
— ~MyClass()
— Destroys an existing object
— If you have some member variables that are ‘new’ed, you should delete them here

— Called when
* An object on the stack goes out of scope (})
* An object on the heap is deleted using ‘delete’

If you don’t write these by yourself, default ones will be generated by compiler
— Write these only if you want to do some additional tasks

The Big Three

class Student {
public:
// Normal constructor
Student(const string &name, double gpa) : name(name), gpa(gpa) {
someObj = new MyClass();
}

// Copy constructor
Student(const Student &rhs) : name(rhs.name), gpa(rhs.gpa) {
someObj = new MyClass();

3

// Destructor
~Student() { delete someObj; }

// operator=
operator=(const Student &rhs) {

name = rhs.name;

gpa = rhs.gpa;

someObj = MyClass(rhs.someObj); // Calls copy constructor of MyClass
}

private:
string name;
double gpa;
MyClass *someObj;
b

The Big Three

void someFunction() {

// Calls the normal constructor
Student jane(“Jane”, 3.0); // stack
Student *pJane = new Student(“Jane”, 3.0); // heap

// Calls the copy constructor
Student tom(jane); // stack
student *pTom = new Student(jane); // heap

// Calls the operator=()
tom = jane;
*pTom = *pJane;

// Calls the destructor for heap objects
delete pJane;
delete pTom;

} // At this point the destructor for stack objects (jane and tom) are called

Friends

e Way to grant private member access to specific
classes/functions from [2]

class ListNode {
private:
int element;
ListNode *next;
ListNode(int element, ListNode *next=NULL) : element(element), next(next) {3}

friend class List; // friend class
friend int someFunction(); // friend methods

3

class List {
public:
List() {
head =
3
private:
ListNode *head;

3

new ListNode(); // can call ListNode’s private constructor

int someFunction() { .. }

The struct Type

* Aclass in which the members default to public
— In a class, the members default to private
* Unlike C, you don’t need a ‘struct’ keyword to

refer to a struct type, because it is now a
‘class’

struct MyClass {
MyClass(int arg) { .. }

s

MyClass m(100);

Namespaces

 C++ equivalent of Java packages

namespace myspace {
class Student { .. };
class Professor { .. };

3

// Refers to student class with the namespace name
myspace: : Student s;
myspace: :Professor p;

// This allows you to use ‘Student’ without the namespace name
using myspace: :Student;

Student s;

myspace: :Professor p;

// This allows you to use everything in myspace without the namespace name
using myspace;

Student s;

Professor p;

Incomplete Class Declaration

 Unlike Java, the order of class declaration matters

— If class B is declared after class A, class A does not
know about class B

— But sometimes class A needs to know (at least) the
existence of class B

* ex) A has B’s pointer as a member and B has A’s pointer too

e Solution: incomplete class declaration
— We can incompletely declare class B before class A

— The only thing class A knows about B is its existence; A
does not know about B’s members or B’s object size
because B’s full declaration is below A

Incomplete Class Declaration

class B; // incomplete class declaration

class A { // Now A knows B’s existence
public:
void fool(B *b); // OK
void foo2(B &b); // OK
void foo3(B b); // (X) Not OK! A does not know B’s object size

void bar(B *b) {
b->baz(); // (X) Not OK! A does not know about B’s members
3
B *datal; // OK
B &data2; // OK
B data3; // (X) Not OK! A does not know B’s object size

1

class B {

public:
void baz() { .. }
A *data;

+;

Inheritance

* Basic syntax
— class Child : public Parent { .. };

— Actually there are also private and protected inheritance —
nevermind, you are not going to use them. Just don’t
forget to use ‘public’ keyword

e Calling base class constructor in initializer lists

— Child(int argl, int arg2)
: Parent(argl), .. { .. }

e Calling base class functions
— Parent::foo(..);

Inheritance

from [2]

class Person {
public:
Person(int ssn, const string &name) : ssn(ssn), name(name) {}
const string &getName() const { return name; }
int getSSN() const { return ssn; }
void print() const { cout << ssn << ¥, “ << name }

private:
int ssn;
string name;

};

class Student : public Person {

public:
Student(int ssn, const string &name, double gpa) : Person(ssn, name), gpa(gpa) {}
double getGPA() const { return gpa; }
void print() const { Person::print(); cout << “, “ << gpa; } // override

private:
double gpa;

};

Dynamic Dispatch

* Java always uses the runtime type to decide
which method to use

* But C++ uses the static type by default

Student s(123456789, “Jane”, 4.0);

s.print(); // calls Student::print
Person &pl = s; // pl1 and s are same object
pl.print(); // calls Person::print!
Person *p2 = &s; // p2 points to s

p2->print(); // calls Person::print!

Virtual Functions

* You need a ‘virtual’ keyword to tell the compiler this
function should use dynamic dispatch

* InJava, all functions are virtual functions

class Person {

public:
;irtual void print() const { cout << ssn << “, “ << name }
};m
class Student : public Person { This can be omitted in
public: child class
;irtUdl void print() const { Person::print(); cout << “, “ << gpa; }

1

from [2]

The Big Three Revisited

In a subclass, the default Big Three are constructed if you don’t
explicitly define them

Copy constructor
— Invokes copy constructor on the base class(es)
— And then invokes copy constructors on each of newly added members

operator=
— Invokes operator= on the base class(es)
— And then invokes operator= on each of newly added members

Destructor
— Invokes destructors on each of newly added members
= invokes destructor on the base class(es)

Virtual Destructor

* |n a base class, the destructor should be declared virtual

— Otherwise the base class portion of the object will not be
deleted if it is deleted through base class pointer/reference

class Person {
public:

virtual ~Person() { .. }
s

Student xtom = new Student(“123456”, “Tom”, 3.0);
Person *p = tom;

// If ~Person() is declared non-virtual, this will not delete the base class
portion of the object
delete p;

Abstract Methods and Classes

 C++ equivalent of Java abstract methods and classes
— Abstract classes cannot be instantiated

 In C++, a method is abstract if:

— It is declared virtual
— The declaration is followed by =0
— ex) virtual double area() const = 0;

* |In C++, a class is abstract if:
— It has at least one abstract method

Slicing

* You can access child classes by “Jane” |
pointers and references of
base classes

* But you can’t use base classes
objects to access child classes

Student jane;

GPA is
sliced

Person p = jane;

from [2]

Student jane(12345, “Jane”, 4.0);
Person p(54321, “Bob”);

p = jane; // object is sliced!
p.print();

void print(Person p) { p.print(); }
print(jane); // call-by-value, so object is sliced!

Type Conversions

e C++-style casts
— static_cast
e Similar to C-style cast
— dynamic_cast
* Can only be used with pointers and references to classes (or with void*)
* Performs a runtime check if the cast is correct; returns NULL if incorrect

— const_cast

* Manipulates the constness of the object pointed by a pointer, either to be set
or to be removed

— reinterpret_cast
* Converts any pointer type to any other pointer type
* Simple binary copy of the value from one pointer to the other

 LLVM-style casts
— cast, dyn_cast, cast_or_null, dyn_cast_or_null

Type Conversions

class Base {};
class Derived: public Base {};

Base *pb = new Base;

// C-style cast
Derived *pd = (Derived*) pb;

// static_cast
Derived *pd = static_cast<Derived#*>(pb);

// dynamic_cast
Derived *pd = dynamic_cast<Derived*>(ph); // returns NULL if failed
if (!pd) cout << “Type casting failed!”;

// const_cast
void printStr (char #*str) {
cout << str << '"\n’;
3
const char *c = ”Hello world”;
printStr(const_cast<char*>(c)); // removes constness to pass it to printStr

Multiple Inheritance

 Don’t use this unless you really need to...
— Has many tricky aspects
— You don’t need to use this in your code in COS320

* We are not going to cover the details here

from [2]

class
class
class
class

Person : public Printable, public Serializable { .. };
Student : virtual public Person { .. };
Employee : virtual public Person { .. };

StudentEmployee :

public Student, public Employee { .. };

References

* [1] Brian Kernighan, COS333 lecture notes,
2013.

e [2] Mark Allen Weiss, C++ for Java
Programmers, Pearson Prentice Hall, 2004.

e [3] Scott Meyers, Effective C++ Third Edition,
Addison-Wesley, 2005.

