Def-Use Chains, Use-Def Chains

- Many optimizations need to find all use-sites for each definition, and all definition-sites for each use.
 - Constant propagation must refer to the definition-site of the unique reaching definition.
 - Copy propagation, reverse copy propagation, common sub-expression elimination...
- Information connecting all use-sites to corresponding definition-sites can be stored as def-use chains and/or use-def chains.
- \textit{def-use chains}: for each definition d of r, list of pointers to all uses of r that d reaches.
- \textit{use-def chains}: for each use u of r, list of pointers to all definitions of r that reach u.

Use-Def Chains, Def-Use Chains

\begin{center}
\begin{tabular}{c|c}
\hline
1: & \texttt{r1 = 5} \\
\hline
2: & \texttt{r3 = 1} \\
\hline
3: & \texttt{branch r3 > r1, 6;} \\
\hline
4: & \texttt{r3 = r3 + 1} \\
\hline
5: & \texttt{goto 3;} \\
\hline
6: & \texttt{r4 = 10} \\
\hline
7: & \texttt{r1 = r1 + r4} \\
\hline
8: & \texttt{M[r3] = r1} \\
\hline
\end{tabular}
\end{center}
Static Single Assignment (SSA):

- Improvement on def-use chains
- Each register has only one definition in program
- For each use \(u \) of \(r \), only one definition of \(r \) reaches \(u \)

\[
\begin{align*}
\text{r1} &= 5 \\
\downarrow \\
\text{r1} &= \text{r1} + 1 \\
\text{r2} &= \text{r1} + 1 \\
\text{r3} &= \text{r1} - 1
\end{align*}
\]

Why SSA?

Static Single Assignment Advantages:

- Dataflow analysis and code optimization made simpler.
 - Variables have only one definition - no ambiguity.
 - Dominator information is encoded in the assignments.
- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.
- Eliminates unnecessary relationships:

 \[
 \begin{align*}
 \text{for } i = 1 \text{ to } N \text{ do } A[i] &= 0 \\
 \text{for } i = 1 \text{ to } M \text{ do } B[i] &= 1
 \end{align*}
 \]
 - No reason why both loops should be forced to use same register to hold index register.
 - SSA renames second \(i \) to new register which may lead to better register allocation/optimization.

(Dynamic Single Assignment is also proposed in the literature.)

Conversion to SSA Code

Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

\[
\begin{align*}
\text{r1} &= \text{r3} + \text{r4} \\
\text{r2} &= \text{r1} - 1 \\
\text{r1} &= \text{r4} + \text{r2} \\
\text{r2} &= \text{r5} \times 4 \\
\text{r1} &= \text{r1} + \text{r2}
\end{align*}
\]

Control flow introduces problems.
Conversion to SSA Form

- \(r_3 = r_2 + 1 \)
- \(r_3 = r_2 - 1 \)
- \(r_4 = r_3 \times 4 \)

Use \(\phi \) functions.

Conversion to SSA Form

- \(\phi \)-functions enable the use of \(r_3 \) to be reached by exactly one definition of \(r_3 \).
- \(r_3'' = \phi(r_3', r_3^\prime) \):
 - \(r_3'' = r_3 \) if control enters from left
 - \(r_3'' = r_3^\prime \) if control enters from right
- Can implement \(\phi \)-functions as set of move operations on each incoming edge.
- In practice, \(\phi \)-functions are just used as notation.

Conversion to SSA Form

Can insert \(\phi \)-functions for each register at each node with more than two predecessors.

\(r_1 = 5 \)
\(r_2 = r_1 + 1 \)
\(r_3 = r_2 + 1 \)
\(r_3 = r_2 - 1 \)
\(r_4 = r_3 \times r_1 \)

We can do better...
Path-Convergence Criterion: Insert a ϕ-function for a register r at node z of the flow graph if all of the following are true:

1. There is a block x containing a definition of r.
2. There is a block $y \neq x$ containing a definition of r.
3. There is a non-empty path P_{xy} of edges from x to z.
4. There is a non-empty path P_{yz} of edges from y to z.
5. Paths P_{xz} and P_{yz} do not have any node in common other than z.
6. The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

Assume CFG entry node contains implicit definition of each register:

- $r = \text{actual parameter value}$
- $r = \text{undefined}$

ϕ-functions are counted as definitions.

Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) &&
 (z does not contain a ϕ-function for r) DO:
 insert $r = \phi(r, r, ..., r)$ (one per predecessor) at node z.

- Costly to compute.
- Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Dominance Frontier

Definitions:

- x strictly dominates w if x dominates w and $x \neq w$.
- dominance frontier of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.
Dominance Frontier

- **Dominance Frontier Criterion**: Whenever node x contains definition of some register r, then need to insert ϕ-function for r in all nodes z in dominance frontier of x.
- **Iterated Dominance Frontier**: Need to repeatedly apply since ϕ-function counts as a definition.

Dominance Frontier Computation

- Use dominator tree
- $DF[n]$: dominance frontier of n
- $DF_{local}[n]$: successors of n in CFG that are not strictly dominated by n
- $DF_{sp}[c]$: nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator

$$DF[n] = DF_{local}[n] \cup (\bigcup_{c \in \text{children}[n]} DF_{sp}[c])$$

- where $\text{children}[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree.

SSA Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$DOM[n]$</th>
<th>$IDOM[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dominator Analysis

- If \(d \) dominates each of the \(p_i \), then \(d \) dominates \(n \).
- If \(d \) dominates \(n \), then \(d \) dominates each of the \(p_i \).
- \(\text{Dom}[n] \) = set of nodes that dominate node \(n \).
- \(N \) = set of all nodes.
- Computation:
 1. \(\text{Dom}[s_0] = \{s_0\} \).
 2. for \(n \in N - \{s_0\} \) do \(\text{Dom}[n] = N \)
 3. while (changes to any \(\text{Dom}[n] \) occur) do
 4. for \(n \in N - \{s_0\} \) do
 5. \(\text{Dom}[n] = \{n\} \cup (\cap_{p \in \text{pred}[n]} \text{Dom}[p]) \).

SSA Example

Insert phi-functions:

1. \(r_1 = 1 \)
2. \(r_2 = 1 \)
3. \(r_3 = 0 \)
4. branch \(r_3 < 100 \)
5. branch \(r_2 < 20 \)
6. return \(r_2 \)
7. \(r_2 = 1 \)
8. \(r_3 = r_3 + 1 \)
9. \(r_2 = r_3 \)
10. \(r_3 = r_3 + 2 \)
11. \(\)
Rename Variables:
1. traverse dominator tree, renaming different definitions of \(r \) to \(r_1, r_2, r_3, \ldots \)
2. rename each regular use of \(r \) to most recent definition of \(r \)
3. rename \(\phi \)-function arguments with each incoming edge’s unique definition

Static Single Assignment

Static Single Assignment Advantages:
- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.
- Eliminates unnecessary relationships:

 for \(i = 1 \) to \(N \) do \(A[i] = 0 \)
 for \(i = 1 \) to \(M \) do \(B[i] = 1 \)

 – No reason why both loops should be forced to use same register to hold index register.
 – SSA renames second \(i \) to new register which may lead to better register allocation.
- SSA form make certain optimizations quick and easy — dominance property.
 – Variables have only one definition - no ambiguity.
 – Dominator information is encoded in the assignments.
SSA Dominance Property

Dominance property of SSA form: definitions dominate uses

- If x is i^{th} argument of ω-function in node n, then definition of x dominates i^{th} predecessor of n.
- If x is used in non-ϕ statement in node n, then definition of x dominates n.

SSA Dead Code Elimination

Given d: $t = x \lor y$

- t is live at end of node d if there exists path from end of d to use of t that does not go through definition of t.
- if program not in SSA form, need to perform liveness analysis to determine if t live at end of d.
- if program is in SSA form:
 - cannot be another definition of t
 - if there exists use of t, then path from end of d to use exists, since definitions dominate uses.
 - every use has a unique definition
 - t is live at end of node d if t is used at least once

SSA Dead Code Elimination

Algorithm:

```
WHILE (for each temporary $t$ with no uses $\&\&$
statement defining $t$ has no other side-effects) DO
delete statement definition $t$:

1: $r1 = 5$
2: $r2 = 10$
3: branch $r3 > r2$
4: $r2' = r2 + 15$
5: $r4 = r3 + x$
6: $r2'' = \phi (r2', r2)$
7: $M[r4] = r2''$
```
SSA Simple Constant Propagation

Given \(d \): \(t = c \), \(c \) is constant
Given \(u \): \(x = t \op b \)

- if program not in SSA form:
 - need to perform reaching definition analysis
 - use of \(t \) in \(u \) may be replaced by \(c \) if \(d \) reaches \(u \) and no other definition of \(t \) reaches \(u \)
- if program is in SSA form:
 - \(d \) reaches \(u \), since definitions dominate uses, and no other definition of \(t \) exists on path from \(d \) to \(u \)
 - \(d \) is only definition of \(t \) that reaches \(u \), since it is the only definition of \(t \).
 - any use of \(t \) can be replaced by \(c \)

SSA Conditional Constant Propagation

- \(x \) is 2 always has value of 1
- nodes 9, 10 never executed
- “simple” constant propagation algorithms assumes (through reaching definitions analysis) nodes 9, 10 may be executed.
- cannot optimize use of \(x \) in node 5 since definitions 7 and 9 both reach 5.
SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track run-time value of each register \(r \) using lattice of values:

- \(V[r] = \bot \) (bottom): compiler has seen no evidence that any assignment to \(r \) is ever executed.
- \(V[r] = 4 \): compiler has seen evidence that an assignment \(r = 4 \) is executed, but has seen no evidence that \(r \) is ever assigned to another value.
- \(V[r] = \top \) (top): compiler has seen evidence that \(r \) will have, at various times, two different values, or some value that is not predictable at compile-time.

Also:

- all registers start at bottom of lattice
- new information can only move registers up in lattice

SSA Conditional Constant Propagation

Track executability of each node in \(N \):

- \(E[N] = \text{false} \): compiler has seen no evidence that node \(N \) can ever be executed.
- \(E[N] = \text{true} \): compiler has seen evidence that node \(N \) can be executed.

Initially:

- \(V[r] = \bot \), for all registers \(r \)
- \(E[\text{s}_0] = \text{true} \), \(\text{s}_0 \) is CFG start node
- \(E[N] = \text{false} \), for all CFG nodes \(N \neq \text{s}_0 \)

SSA Conditional Constant Propagation

Algorithm: apply following conditions until no more changes occur to \(E \) or \(V \) values:

1. Given: register \(r \) with no definition (formal parameter, uninitialized).
 Action: \(V[r] = \top \)

2. Given: executable node \(B \) with only one successor \(C \)
 Action: \(E[C] = \text{true} \)

3. Given: executable assignment \(x = \text{op} \ y \), \(V[x] = c_1 \) and \(V[y] = c_2 \)
 Action: \(V[r] = c_1 \text{op} c_2 \)

4. Given: executable assignment \(x = \text{op} \ y \), \(V[x] = \top \) or \(V[y] = \top \)
 Action: \(V[r] = \top \)

5. Given: executable assignment \(x = \phi(x_1, x_2, ..., x_n) \), \(V[x_1] = c_1 \), \(V[x_j] = c_2 \), and predecessors \(i \) and \(j \) are executable
 Action: \(V[r] = \top \)
6. Given: executable assignment \(r = M[. . .] \) or \(r = f (. . .) \)
 Action: \(V[r] = T \)

7. Given: executable assignment \(r = \phi(x_1, x_2, . . ., x_n) \), \(V[x_i] = T \), and predecessor \(i \) is executable
 Action: \(V[r] = T \)

8. Given: executable assignment \(r = \phi(x_1, x_2, . . ., x_n) \), \(V[x_i] = c_i \), and predecessor \(i \) is executable; and for all \(j \neq i \) predecessor \(j \) is not executable, or \(V[x_j] = \perp \), or \(V[x_j] = c_j \)
 Action: \(V[r] = c_i \)

9. Given: executable branch \(\text{branch } x \rightarrow \text{bop } y \), \(L_1 \) (else \(L_2 \)), \(V[x] = T \) or \(V[y] = T \)
 Action: \(E[L_1] = \text{true}, E[L_2] = \text{true} \)

10. Given: executable branch \(\text{branch } x \rightarrow \text{bop } y \), \(L_1 \) (else \(L_2 \)), \(V[x] = c_1 \) and \(V[y] = c_2 \)
 Action: \(E[L_1] = \text{true OR } E[L_2] = \text{true depending on } c_1 \text{ bop } c_2. \)

Example

Given \(V, E \) values, program can be optimized as follows:

- if \(E[B] = \text{false} \), delete node \(B \) from CFG.
- if \(V[r] = c_i \), replace each use of \(r \) by \(c_i \), delete assignment to \(r \).

Diagram

```
1. \( r_1 = 1 \)
2. \( r_2 = 1 \)
3. \( r_3 = 0 \)
4. \( c_2 = \#(2, 2^{***}) \)
\( c_3 = \#(3, 3^{***}) \)
\( \text{branch } r_3 < 100 \)
5. \( \text{branch } r_2 < 20 \)
6. \( \text{return } r_2^* \)
7. \( r_2^{**} = r_1 \)
8. \( r_3^{**} = r_3^{***} + 1 \)
9. \( r_2^{***} = r_3^{***} \)
10. \( r_3^{***} = r_3^{****} + 2 \)
```

Table

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E[N])</th>
<th>(r)</th>
<th>(V[r])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t</td>
<td>(r_1)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>(r_2)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>(r_2^*)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>(r_2^{**})</td>
<td>(\perp)</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>(r_2^{***})</td>
<td>(\perp)</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>(r_2^{****})</td>
<td>(\perp)</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>(r_3)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>(r_3^*)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>(r_3^{**})</td>
<td>(\perp)</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>(r_3^{***})</td>
<td>(\perp)</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>(r_3^{****})</td>
<td>(\perp)</td>
</tr>
</tbody>
</table>
SSA Conditional Constant Propagation

Example

1: \(r1 = 1 \)

2: \(r2 = 1 \)

3: \(r3 = 0 \)

4: \(r2' = \min(\min(\{1, r2, r3\})), \min(\{1, r3\}) \)

5: \(r3' = \min(\min(\{1, r3\}), \min(\{1, r3'\})) \)

branch \(r3' < 100 \)

6: \(\text{return } r2' \)

7: \(r2'' = r1 \)

8: \(r3'' = r3' + 1 \)

11: \(r2''' = \min(\min(\{1, r2''\}), \min(\{1, r2''\})) \)

\(r3''' = \min(\min(\{1, r3''\}), \min(\{1, r3''\})) \)

SSA Conditional Constant Propagation

Example

1: \(r1 = 1 \)

2: \(r2 = 1 \)

3: \(r3 = 0 \)

4: \(r2' = \min(\{1, 1\}) \)

5: \(r3' = \min(\{1, r3\}, \min(\{1, r3''\})) \)

branch \(r3' < 100 \)

6: \(\text{return } 1 \)

7: \(r2'' = 1 \)

8: \(r3'' = r3' + 1 \)

11: \(r2''' = \min(\{1, 1\}) \)

\(r3''' = \min(\{1, r3''\}, \min(\{1, r3''\})) \)

SSA Conditional Constant Propagation

Example

3: \(r3' = 0 \)

4: \(r3' = \min(\{1, r3''\}) \)

branch \(r3' < 100 \)

6: \(\text{return } 1 \)

8: \(r3''' = r3' + 1 \)

11: \(r3'''' = \min(\{1, r3'''\}, \min(\{1, r3'''\})) \)
SSA Conditional Constant Propagation

Example

3: \(r3 = 0 \)

4: \(\text{branch } r3 < 100 \)

6: \(\text{return } 1 \)

8: \(r3 = r3 + 1 \)