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Overlap Iterations Using Pipelining 

1 2 3 n Iteration 

time 

1 

2 

3 

n 

With hardware pipelining, while one instruction is in 
fetch, another is in decode, another in execute.  Same 
thing here, multiple iterations are processed 
simultaneously, with each instruction in a separate 
stage.  1 iteration still takes the same time, but time to 
complete n iterations is reduced! 
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A Software Pipeline 
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Loop body 
with 4 ops 

Prologue - 
fill the 
pipe 

Epilogue - 
drain the 
pipe 

Kernel – 
steady 
state 

time 

Steady state: 4 iterations executed 
simultaneously, 1 operation from each 
iteration.  Every cycle, an iteration starts 
and finishes when the pipe is full. 
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Creating Software Pipelines 
•  Lots of software pipelining techniques out there 
•  Modulo scheduling 

•  Most widely adopted 
•  Practical to implement, yields good results 

•  Conceptual strategy 
•  Unroll the loop completely 
•  Then, schedule the code completely with 2 constraints 

•  All iteration bodies have identical schedules 
•  Each iteration is scheduled to start some fixed number of cycles later than the 

previous iteration 
•  Initiation Interval (II) = fixed delay between the start of successive 

iterations 
•  Given the 2 constraints, the unrolled schedule is repetitive (kernel) except 

the portion at the beginning (prologue) and end (epilogue) 
•  Kernel can be re-rolled to yield a new loop 
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Creating Software Pipelines (2) 
•  Create a schedule for 1 iteration of the loop such 

that when the same schedule is repeated at 
intervals of II cycles 
•  No intra-iteration dependence is violated 
•  No inter-iteration dependence is violated 
•  No resource conflict arises between operation in same 

or distinct iterations 
•  We will start out assuming special hardware 

support for the discussion (e.g. IA-64) 
•  Rotating registers 
•  Predicates 
•  Brtop 
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Terminology 

Iter 1 

Iter 2 

Iter 3 
II 

time 
Initiation Interval (II) = fixed delay 
between the start of successive iterations 
 
Each iteration can be divided 
into stages consisting of II cycles 
each 
 
Number of stages in 1 iteration 
is termed the stage count (SC) 
 
Takes SC-1 cycles to fill/drain the pipe 
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Resource Usage Legality 
•  Need to guarantee that 

•  No resource is used at 2 points in time that are separated by 
an interval which is a multiple of II 

•  Within a single iteration, the same resource is never used 
more than 1x at the same time modulo II 

•  Known as modulo constraint, where the name modulo 
scheduling comes from 

•  Modulo reservation table solves this problem 
•  To schedule an op at time T needing resource R 

•  The entry for R at T mod II must be free 
0 

1 

2 

II = 3 

alu1 alu2 mem bus0 bus1 br 
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Dependences in a Loop 
•  Need worry about 2 kinds 

•  Intra-iteration 
•  Inter-iteration 

•  Delay 
•  Minimum time interval between the 

start of operations 
•  Operation read/write times 

•  Distance 
•  Number of iterations separating the 2 

operations involved 
•  Distance of 0 means intra-iteration 

•  Recurrence manifests itself as a 
circuit in the dependence graph 
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<1,1> 

<1,0> <1,2> 

<1,2> 

<1,0> 

<delay, distance> 

Edges annotated with tuple 
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Dynamic Single Assignment (DSA) Form 

1: r3 = load(r1) 
2: r4 = r3 * 26 
3: store (r2, r4) 
4: r1 = r1 + 4 
5: r2 = r2 + 4 
6: p1 = cmpp (r1 < r9) 
7: brct p1 Loop 

Impossible to overlap iterations because each iteration writes to the same  
register.  Remove the anti and output dependences. 
 
Rotating register (virtual for now) 
    * Each register is an infinite push down array (Expanded virtual reg or EVR) 
    * Write to top element, but can reference any element 
    * Remap operation slides everything down à r[n] changes to r[n+1] 
 
A program is in DSA form if the same virtual register (EVR element) is never 
assigned to more than 1x on any dynamic execution path 

1: r3[-1] = load(r1[0]) 
2: r4[-1] = r3[-1] * 26 
3: store (r2[0], r4[-1]) 
4: r1[-1] = r1[0] + 4 
5: r2[-1] = r2[0] + 4 
6: p1[-1] = cmpp (r1[-1] < r9) 
remap r1, r2, r3, r4, p1 
7: brct p1[-1] Loop 

DSA 
conversion 
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Physical Realization of EVRs 
•  EVR may contain an unlimited number values 

•  But, only a finite contiguous set of elements of an EVR are 
ever live at any point in time 

•  These must be given physical registers 
•  Conventional register file 

•  Remaps are essentially copies, so each EVR is realized by 
a set of physical registers and copies are inserted 

•  Rotating registers 
•  Direct support for EVRs 
•  No copies needed 
•  File “rotated” after each loop iteration is completed 
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Loop Dependence Example 

1: r3[-1] = load(r1[0]) 
2: r4[-1] = r3[-1] * 26 
3: store (r2[0], r4[-1]) 
4: r1[-1] = r1[0] + 4 
5: r2[-1] = r2[0] + 4 
6: p1[-1] = cmpp (r1[-1] < r9) 
remap r1, r2, r3, r4, p1 
7: brct p1[-1] Loop 

1 

2 

3 

4 

5 

6 

7 
In DSA form, there are no 
inter-iteration anti or output  
dependences! 
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0,0 

<delay, distance> 
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Minimum Initiation Interval (MII) 
•  Remember, II = number of cycles between the start of 

successive iterations 
•  Modulo scheduling requires a candidate II be selected 

before scheduling is attempted 
•  Try candidate II, see if it works 
•  If not, increase by 1, try again repeating until successful 

•  MII is a lower bound on the II 
•  MII = Max(ResMII, RecMII) 
•  ResMII = resource constrained MII 

•  Resource usage requirements of 1 iteration 

•  RecMII = recurrence constrained MII 
•  Latency of the circuits in the dependence graph 
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ResMII 

Simple resource model 
 
A processor has a set of resources R.  For each resource r in R 
there is count(r) specifying the number of  identical copies 

Concept: If there were no dependences between the operations, what 
is the the shortest possible schedule? 

ResMII = MAX        (uses(r) / count(r)) 
for all r in R 

uses(r) = number of times the resource is used in 1 iteration 

In reality its more complex than this because operations can have 
multiple alternatives (different choices for resources it could be  
assigned to) 
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ResMII Example 

resources: 4 issue, 2 alu, 1 mem, 1 br 
latencies: add=1, mpy=3, ld = 2, st = 1, br = 1 

1: r3 = load(r1) 
2: r4 = r3 * 26 
3: store (r2, r4) 
4: r1 = r1 + 4 
5: r2 = r2 + 4 
6: p1 = cmpp (r1 < r9) 
7: brct p1 Loop 

ALU:  used by 2, 4, 5, 6 
 à 4 ops / 2 units = 2 

Mem: used by 1, 3 
 à 2 ops / 1 unit = 2 

Br: used by 7 
 à 1 op / 1 unit = 1 

 
ResMII = MAX(2,2,1) = 2 



- 15 - 

RecMII 
Approach: Enumerate all irredundant elementary circuits in the  
dependence graph 
RecMII = MAX        (delay(c) / distance(c)) 

for all c in C 

delay(c) = total latency in dependence cycle c (sum of delays) 
distance(c) = total iteration distance of cycle c (sum of distances) 

2 

1 
1,0 

3,1 

cycle   
k  1 
k+1  2 
k+2 
k+3 
k+4      1 
k+5      2 

1 

3 4 cycles, 
RecMII = 4 

delay(c) = 1 + 3 = 4 
distance(c) = 0 + 1 = 1 
RecMII = 4/1 = 4 
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RecMII Example 
1: r3 = load(r1) 
2: r4 = r3 * 26 
3: store (r2, r4) 
4: r1 = r1 + 4 
5: r2 = r2 + 4 
6: p1 = cmpp (r1 < r9) 
7: brct p1 Loop 
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1,0 

1,0 

0,0 3,0 

2,0 

1,1 

1,1 

1,1 

1,1 

0,0 

<delay, distance> 

4 à 4: 1 / 1 = 1 
5 à 5: 1 / 1 = 1 
4 à 1 à 4: 1 / 1 = 1 
5 à 3 à 5: 1 / 1 = 1 
 
RecMII = MAX(1,1,1,1) = 1 
 
Then, 
 
MII = MAX(ResMII, RecMII) 
MII = MAX(2,1) = 2 
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Modulo Scheduling Process 
•  Use list scheduling but we need a few twists 

•  II is predetermined – starts at MII, then is incremented 
•  Cyclic dependences complicate matters 

•  There is a window where something can be scheduled! 

•  Guarantee the repeating pattern 

•  2 constraints enforced on the schedule 
•  Each iteration begin exactly II cycles after the previous one 
•  Each time an operation is scheduled in 1 iteration, it is 

tentatively scheduled in subsequent iterations at intervals of II 
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Loop Prolog and Epilog 

Prolog 

Epilog 

Kernel 

Only the kernel involves executing full width of operations 
 
Prolog and epilog execute a subset (ramp-up and ramp-down)  

II = 3 
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A0 
A1   B0 
A2   B1       C0 
 
A     B         C         D 
  
        Bn       Cn-1    Dn-2 
                    Cn       Dn-1 
                                Dn 

Separate Code for Prolog and Epilog 

A 
B 
C 
D 

Loop body 
with 4 ops 

Prolog - 
fill the 
pipe 

Kernel 

Epilog - 
drain the 
pipe 

Generate special code before the loop (preheader) to fill the pipe  
and special code after the loop to drain the pipe. 
 
Peel off II-1 iterations for the prolog.  Complete II-1 iterations 
in epilog 
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Removing Prolog/Epilog 

Prolog 

Epilog 

Kernel 

II = 3 

Disable using 
predicated execution 

Execute loop kernel on every iteration, but for prolog and epilog 
selectively disable the appropriate operations to fill/drain the pipeline 
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Kernel-only Code Using Rotating Predicates 
A0 
A1   B0 
A2   B1       C0 
 

A     B         C         D 
  

        Bn       Cn-1    Dn-2 
                    Cn       Dn-1 
                                Dn 

P[0]  P[1]  P[2]  P[3] 
1  0  0  0 
1  1  0  0 
1  1  1  0 
1  1  1  1 
… 
0  1  1  1 
0  0  1  1 
0  0  0  1 

A if P[0]   B if P[1]   C  if P[2]  D if P[3] 

P referred to as the staging predicate  


