
1

Topic 12: Cyclic Instruction Scheduling

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

- 2 -

Overlap Iterations Using Pipelining

1 2 3 n Iteration

time

1

2

3

n

With hardware pipelining, while one instruction is in
fetch, another is in decode, another in execute. Same
thing here, multiple iterations are processed
simultaneously, with each instruction in a separate
stage. 1 iteration still takes the same time, but time to
complete n iterations is reduced!

- 3 -

A
B A
C B A

D C B A
 D C B A
 …
 D C B A

 D C B
 D C
 D

A Software Pipeline

A
B
C
D

Loop body
with 4 ops

Prologue -
fill the
pipe

Epilogue -
drain the
pipe

Kernel –
steady
state

time

Steady state: 4 iterations executed
simultaneously, 1 operation from each
iteration. Every cycle, an iteration starts
and finishes when the pipe is full.

- 4 -

Creating Software Pipelines
•  Lots of software pipelining techniques out there
•  Modulo scheduling

•  Most widely adopted
•  Practical to implement, yields good results

•  Conceptual strategy
•  Unroll the loop completely
•  Then, schedule the code completely with 2 constraints

•  All iteration bodies have identical schedules
•  Each iteration is scheduled to start some fixed number of cycles later than the

previous iteration
•  Initiation Interval (II) = fixed delay between the start of successive

iterations
•  Given the 2 constraints, the unrolled schedule is repetitive (kernel) except

the portion at the beginning (prologue) and end (epilogue)
•  Kernel can be re-rolled to yield a new loop

- 5 -

Creating Software Pipelines (2)
•  Create a schedule for 1 iteration of the loop such

that when the same schedule is repeated at
intervals of II cycles
•  No intra-iteration dependence is violated
•  No inter-iteration dependence is violated
•  No resource conflict arises between operation in same

or distinct iterations
•  We will start out assuming special hardware

support for the discussion (e.g. IA-64)
•  Rotating registers
•  Predicates
•  Brtop

- 6 -

Terminology

Iter 1

Iter 2

Iter 3
II

time
Initiation Interval (II) = fixed delay
between the start of successive iterations

Each iteration can be divided
into stages consisting of II cycles
each

Number of stages in 1 iteration
is termed the stage count (SC)

Takes SC-1 cycles to fill/drain the pipe

- 7 -

Resource Usage Legality
•  Need to guarantee that

•  No resource is used at 2 points in time that are separated by
an interval which is a multiple of II

•  Within a single iteration, the same resource is never used
more than 1x at the same time modulo II

•  Known as modulo constraint, where the name modulo
scheduling comes from

•  Modulo reservation table solves this problem
•  To schedule an op at time T needing resource R

•  The entry for R at T mod II must be free
0

1

2

II = 3

alu1 alu2 mem bus0 bus1 br

- 8 -

Dependences in a Loop
•  Need worry about 2 kinds

•  Intra-iteration
•  Inter-iteration

•  Delay
•  Minimum time interval between the

start of operations
•  Operation read/write times

•  Distance
•  Number of iterations separating the 2

operations involved
•  Distance of 0 means intra-iteration

•  Recurrence manifests itself as a
circuit in the dependence graph

1

2

4

3

<1,1>

<1,0> <1,2>

<1,2>

<1,0>

<delay, distance>

Edges annotated with tuple

- 9 -

Dynamic Single Assignment (DSA) Form

1: r3 = load(r1)
2: r4 = r3 * 26
3: store (r2, r4)
4: r1 = r1 + 4
5: r2 = r2 + 4
6: p1 = cmpp (r1 < r9)
7: brct p1 Loop

Impossible to overlap iterations because each iteration writes to the same
register. Remove the anti and output dependences.

Rotating register (virtual for now)
 * Each register is an infinite push down array (Expanded virtual reg or EVR)
 * Write to top element, but can reference any element
 * Remap operation slides everything down à r[n] changes to r[n+1]

A program is in DSA form if the same virtual register (EVR element) is never
assigned to more than 1x on any dynamic execution path

1: r3[-1] = load(r1[0])
2: r4[-1] = r3[-1] * 26
3: store (r2[0], r4[-1])
4: r1[-1] = r1[0] + 4
5: r2[-1] = r2[0] + 4
6: p1[-1] = cmpp (r1[-1] < r9)
remap r1, r2, r3, r4, p1
7: brct p1[-1] Loop

DSA
conversion

- 10 -

Physical Realization of EVRs
•  EVR may contain an unlimited number values

•  But, only a finite contiguous set of elements of an EVR are
ever live at any point in time

•  These must be given physical registers
•  Conventional register file

•  Remaps are essentially copies, so each EVR is realized by
a set of physical registers and copies are inserted

•  Rotating registers
•  Direct support for EVRs
•  No copies needed
•  File “rotated” after each loop iteration is completed

- 11 -

Loop Dependence Example

1: r3[-1] = load(r1[0])
2: r4[-1] = r3[-1] * 26
3: store (r2[0], r4[-1])
4: r1[-1] = r1[0] + 4
5: r2[-1] = r2[0] + 4
6: p1[-1] = cmpp (r1[-1] < r9)
remap r1, r2, r3, r4, p1
7: brct p1[-1] Loop

1

2

3

4

5

6

7
In DSA form, there are no
inter-iteration anti or output
dependences!

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

- 12 -

Minimum Initiation Interval (MII)
•  Remember, II = number of cycles between the start of

successive iterations
•  Modulo scheduling requires a candidate II be selected

before scheduling is attempted
•  Try candidate II, see if it works
•  If not, increase by 1, try again repeating until successful

•  MII is a lower bound on the II
•  MII = Max(ResMII, RecMII)
•  ResMII = resource constrained MII

•  Resource usage requirements of 1 iteration

•  RecMII = recurrence constrained MII
•  Latency of the circuits in the dependence graph

- 13 -

ResMII

Simple resource model

A processor has a set of resources R. For each resource r in R
there is count(r) specifying the number of identical copies

Concept: If there were no dependences between the operations, what
is the the shortest possible schedule?

ResMII = MAX (uses(r) / count(r))
for all r in R

uses(r) = number of times the resource is used in 1 iteration

In reality its more complex than this because operations can have
multiple alternatives (different choices for resources it could be
assigned to)

- 14 -

ResMII Example

resources: 4 issue, 2 alu, 1 mem, 1 br
latencies: add=1, mpy=3, ld = 2, st = 1, br = 1

1: r3 = load(r1)
2: r4 = r3 * 26
3: store (r2, r4)
4: r1 = r1 + 4
5: r2 = r2 + 4
6: p1 = cmpp (r1 < r9)
7: brct p1 Loop

ALU: used by 2, 4, 5, 6
 à 4 ops / 2 units = 2

Mem: used by 1, 3
 à 2 ops / 1 unit = 2

Br: used by 7
 à 1 op / 1 unit = 1

ResMII = MAX(2,2,1) = 2

- 15 -

RecMII
Approach: Enumerate all irredundant elementary circuits in the
dependence graph
RecMII = MAX (delay(c) / distance(c))

for all c in C

delay(c) = total latency in dependence cycle c (sum of delays)
distance(c) = total iteration distance of cycle c (sum of distances)

2

1
1,0

3,1

cycle
k 1
k+1 2
k+2
k+3
k+4 1
k+5 2

1

3 4 cycles,
RecMII = 4

delay(c) = 1 + 3 = 4
distance(c) = 0 + 1 = 1
RecMII = 4/1 = 4

- 16 -

RecMII Example
1: r3 = load(r1)
2: r4 = r3 * 26
3: store (r2, r4)
4: r1 = r1 + 4
5: r2 = r2 + 4
6: p1 = cmpp (r1 < r9)
7: brct p1 Loop

1

2

3

4

5

6

7

1,0

1,0

0,0 3,0

2,0

1,1

1,1

1,1

1,1

0,0

<delay, distance>

4 à 4: 1 / 1 = 1
5 à 5: 1 / 1 = 1
4 à 1 à 4: 1 / 1 = 1
5 à 3 à 5: 1 / 1 = 1

RecMII = MAX(1,1,1,1) = 1

Then,

MII = MAX(ResMII, RecMII)
MII = MAX(2,1) = 2

- 17 -

Modulo Scheduling Process
•  Use list scheduling but we need a few twists

•  II is predetermined – starts at MII, then is incremented
•  Cyclic dependences complicate matters

•  There is a window where something can be scheduled!

•  Guarantee the repeating pattern

•  2 constraints enforced on the schedule
•  Each iteration begin exactly II cycles after the previous one
•  Each time an operation is scheduled in 1 iteration, it is

tentatively scheduled in subsequent iterations at intervals of II

- 18 -

Loop Prolog and Epilog

Prolog

Epilog

Kernel

Only the kernel involves executing full width of operations

Prolog and epilog execute a subset (ramp-up and ramp-down)

II = 3

- 19 -

A0
A1 B0
A2 B1 C0

A B C D

 Bn Cn-1 Dn-2
 Cn Dn-1
 Dn

Separate Code for Prolog and Epilog

A
B
C
D

Loop body
with 4 ops

Prolog -
fill the
pipe

Kernel

Epilog -
drain the
pipe

Generate special code before the loop (preheader) to fill the pipe
and special code after the loop to drain the pipe.

Peel off II-1 iterations for the prolog. Complete II-1 iterations
in epilog

- 20 -

Removing Prolog/Epilog

Prolog

Epilog

Kernel

II = 3

Disable using
predicated execution

Execute loop kernel on every iteration, but for prolog and epilog
selectively disable the appropriate operations to fill/drain the pipeline

- 21 -

Kernel-only Code Using Rotating Predicates
A0
A1 B0
A2 B1 C0

A B C D

 Bn Cn-1 Dn-2
 Cn Dn-1
 Dn

P[0] P[1] P[2] P[3]
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
…
0 1 1 1
0 0 1 1
0 0 0 1

A if P[0] B if P[1] C if P[2] D if P[3]

P referred to as the staging predicate

