Topic 12: Acyclic Instruction Scheduling

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

The Back End

—= Optimization Register Allocation Scheduling ——=
N ———---':jii’
Control Flow Analysis——-{ Dataflow Analysis

The Back End:

1. Maps infinite number of virtual registers to finite number of real registers — register
allocation

2. Removes inefficiencies introduced by front-end — opfimizer
3. Removes 1nefficiencies introduced by programmer — optimizer

4. Adjusts pseudo-assembly composition and order to match target machine — sched-
uler

Scheduling

Multiply instruction takes 2 cycles...

; i; - ;?F; 0 N 1 rl =10 + 0
. = o ; 2 r2 = M[FP + A]
= +
3 r3 = r0 + 4
4 v4 = M[FP + X
[FP + X] 4 r4 = M[FP + X]
LOOP -
1 5 = v3 * rl LOOP:
. B 1 r5 = r3 * rl
3 5 = r2 + r5 2 rl=rl+1
3 rE = r2 + 15
4 M[r5] = r4
4 M[r5] = r4
> rl=rl <+l 5 BR rl 10, LOOP
<=
6 BR rl <= 10, LOOP ’

Scheduling

Multiply instruction takes 2 cycles...
Machine executes 2 instructions per cycle...

1 rl = r0 + O
2 r2 = M[FP + A] 1 rl = r0 + O
3 r3 = r0 + 4 2 r3 = r0 + 4
4 r4 = M[FP + X]

LOOP: LOOP:
1 r5 = r3 * rl 1 r5 = r3 * ril
2 rl = rl + 1 2
3 r5 = r2 + r5 3 r5 = r2 + 5
4 M[r5] = r4 4 M[r5] = r4
5 BR rl <= 10, LOOP

T2
rd

rl

BR

M[FP + A]
M[FP + X]

rl + 1

rl <= 10, LOOP

Instruction Level Parallelism

e Instruction-Level Parallelism (ILP), the concurrent execution of independent assem-
bly instructions.

e ILP 1s a cost effective way to extract performance from programs.
e Exploiting ILP requires global optimization and scheduling.

e Processors are becoming increasingly dependent on the ability of compilers to ex-
pose ILP.

— Current state-of-the-art machines can execute 3 to 6 instructions per cycle if avail-
able. (1.e. Pentium III, DEC Alpha 21264)

— Some processors rely on compiler for guidance. (1.e. Itanium)

e Current state-of-the-art compilers cannot expose this level of ILP in integer pro-
grams.

Data Dependence

e A data dependence 1s a constraint on scheduling arising from the flow of data be-
tween two instructions. Types:

— RAW: An instruction u 1s flow-dependent on a preceding instruction d if u« con-
sumes a value computed by d.

— WAR: An nstruction d 1s anti-dependent on a preceding instruction u 1f d writes
to a location read by w.

— WAW: An mstruction ds 1s output-dependent on a preceding instruction dq 1t dy
writes to a location also written by do.

e Types of data:

— Register dependence

— Memory dependence

Data Dependence

TRUE :

Branch

r4 =

r4 =

r2

rl

r2

rd

r5

< =

r5

10,

TRUE

False Dependence

Eliminate WAW dependences

rl =
branch

rl =
= rl

Eliminate WAR dependences

= rl
rl =
= rl

e Elimmate RAW dependences?

e Register allocation vs. splitting live ranges

Control Dependence

e A control dependence 1s a constraint on scheduling arising from the control flow of
the program.

Branch rl <= 10, TARGETI1

Branch r2 <= 10, TARGET2

rd = 1r3 + 5
TARGET1 :
r5 = r4 -1

TARGET?2 : (Assume: r4 not live here)

Control Dependences

Sources of Control Dependence
e Liveness
o Side-effects
— Potentially Excepting Instructions (PEIs)

— Memory Writes
— Input/Output

Dependences

Latency
e Amount of time after the execution of an mstruction that its result 1s ready.
e An instruction can have more than one latency!

Data Dependence Graph

e A data dependence graph consists of mstructions and a set of directed data depen-
dence edges among them 1n which each edge 1s labeled with its latency and type of
dependence.

e Scheduling (code motion) must respect dependence graph.

Resources

e What does “two instructions per cycle” mean?

e Resource - A function of the processor that can be used by only one instruction at a
time.

e Examples:

— Fetch units
— Decode units
— Execution units

— Register ports

Pipelining

Resource Map

Scheduling

e The goal of scheduling 1s to construct a sort of the dependence graph that:

— Produces the same result - respects dependences

— Minimizes execution time - makes maximal use of machine resources
e Scheduling 1s NP-hard even with simple formulation of problem.
e Use Heuristics to approximate solution.

e In practice, 1s exhaustive search of all schedules practical in most cases?

Heuristic: List Scheduling

e List scheduling, the most common heuristic, 1s O (n32).
e Create ready queue to hold ready structions.
e An instruction 1s 7eady when all incoming dependences are satisfied.

e A dependence 1s satisfied when source of dependence are has been scheduled at least
latency cycles earlier.

List Scheduling

build dependence graph
insert mstructions with no mcoming dependences into ready queue

WHILE (instruction are not scheduled) DO
current_cycle_sched = FALSE
FOREACH 1nstruction 7 1n ready queue DO
IF (resources exist to schedule 7 in cycle) THEN
schedule 7, update ready queue
current_cycle_sched =TRUE
IF (NOT current_cycle_sched) THEN
cycle++
update ready queue

List Scheduling

LOOP:
r5 =

rl =

r5 =

M[r5]

BR rl

r3

rl

r2

r4

10,

rl

r5

LOOP

List Scheduling Priority

Hardware Scheduling

Machines can also do scheduling...

e hardware schedulers process code after 1t has been fetched

e hardware finds independent instructions

e works with legacy architectures (found in x86 ;, Pentium)

e program knowledge more precise at run-time - memory dependence
But compiler still important.

e Hardware schedulers have a small window.

e Hardware complexity increases.

e Hardware does not benefit directly from compiler optimization.

Expression Reformulation

Loop Unrolling

sum = 0;
for 1 = 1 to 30:
sum = sum + A[i];
0 rl = 0 r2 = 0
Loop:
0 r3 = M[rl + A] rl = 1rl1l + 1
1
2 r2 = r2 4+ r3 BR rl < 30, Loop

Renaming

0 rl
Loop:
0 r3
1

2 r2
3 r3
4

5 r2

M[rl + A]

r2 + r3

M[rl + A]

r2 + r3

T2

rl

rl

BR

rl < 30, Loop

Accumulator Expansion

0 rl
Loop:

0 r3
1 r4
2 r2
3 r2

M[rl + A]

M[rl + A]

r2 + r3

r2 + r4

T2

rl

rl

BR

=rl + 1

=1rl + 1

rl < 30, Loop

Accumulator Expansion

0 rl
Loop:

0 r3
1 r4
2 rb
3 r2
4 r2

M[rl + A]

M[rl + A]

M[rl + A]

r2 + r4

r2 + rb

r2 = 0

rl = rl
rl = rl
rl = ril
BR rl <

30,

Loop

r2 + r3

Induction Variable Elimination

0 rl =
1 r24
Loop:

0 r3 =
1 r4 =
2 rb5 =
3 r24
5 r25
0 rz2 =

r25 + rb

r23 + r24
r2 + r25

r23
r25

rl

rl

rl

BR

= rl + 1

rl < 30, Loop

Loop Unrolling and Optimization

0 rl3

1 rlh

2 r24

Loop:

0 r3
rld

1

2 r23
BR

0 r2

1 T2

M[rl3 + A]
rld + 3

= ¥r23 + r3
r1l3 < 30, Loop

= Y23 + r24
= ¥r2 + r25

rld =1

r23 = 0

r25 = 0

r1l3 = r1l3 + 3
r5 = M[rl5 + A]
r24 = vr24 + 14

r4

rlhb

r25

M[rl4 + A]
= rlb + 3

r25 + rb

Pipelining

