Topic 11: Loops

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

Loop Preheaders

Recall:
e A /oop 1s a set of CFG nodes S such that:

1. there exists a header node / 1n S that dominates all nodes 1n S.

— there exists a path of directed edges from /. to any node n S..
— h 1s the only node 1n S with predecessors not in S'.

2. from any node 1n S, there exists a path of directed edges to A.
e A loop 1s a single entry, multiple exit region.
Loop Preheaders:

e Some loop optimizations (loop invariant code removal) need to insert statements
immediately before loop header.

e Create a loop preheader - a basic block betore the loop header block.

Loop Preheader Example

Loop Invariant Computation

e Given statements mloop s: t = a; op as:

— s 18 loop-invariant if @y, as have same value each loop 1teration.

— may sometimes be possible to hoist s outside loop.

e Cannot always tell whether a will have same value each iteration — conservative
approximation.

e d:t = a; op asisloop-invariant within loop L if for each «a;:
1. a; 1s constant, or
2. all definitions of «; that reach d are outside L. or

3. only one definition of «; reaches d, and 1s loop-invariant.

Loop Invarient Computation

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands

- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands

- are constant,
- whose reaching definitions are outside loop, or

- which have a single reaching definition in loop
marked invariant.

Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.

l: rl =0
V

2 2=35
V

Preheader:

3 3=r3+1

4] rl=r2+10
V |

5 M[r3] =rl |
V

0: branchr3 <N

7: 4=rl

Subject to some constraints.

LICM: Constraint 1

d:t = a op b
d must dominate all loop exit nodes where t 1s live out.

l: rl=0
2: 2=135
Preheader:
| — ~

3: bran_cAh 3 <N |
8: e]

5 rl=r2+10

6 M[r3] =rl

7: jump

LICM: Constraint 2

d:t = a op b
there must be only one definition of t inside loop.

v
2: =5
v
Preheader:
—
3: 13=13+1
lll II'.
4 rl=12+10
v I'|
5 M[r3] =rl
'\ll
6]_‘:k = 0 |
1 |
7 M[r3] =rl
‘¢‘(i
8: branch 13 <N
9:

LICM: Constraint 3

d:t = a op b
t must not be live-out of loop preheader node (live-1n to loop)

1: rl=0
v
2: 12=95
v
Preheader:
—
3: M[13] =
W III.
4: 13=r13+1 \
ni/ |
5: rl=12+10
V |
6: M[13] = '
W)
7 branch r3 <N
S
8: 14 =rl

v

LICM

Algorithm for code motion:
e Examine invariant statements of L in same order in which they were marked.

e [f invariant statement s satisfies three criteria for code motion, remove s from L, and
mnsert 1nto preheader node of L.

Induction Variables

Variable i in loop L 1s called induction variable of L if each time i changes value in L,
it 1s incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

! e i is an induction variable
— et \ e j is an induction variable
1=1ta \ , ,
'.‘ —Jj = 1 * ci1sequivalent to
J=1 \C d / —compute e = a * c outside loop:
vV T— — j = j + e = strength reduction

— may not need to use i in loop = induction
variable elimination

Induction Variable Detection

Scan loop L for two classes of induction variables:

e hasic induction variables - variables (i) whose only definitions within L are of the
foormi = i + cori = 1 - c, c1sloop invariant.

e derived induction variables - variables (7) defined only once within L, whose value
1s linear function of some basic induction variable L.
) . ,) “asic,))
Associate triple (i, a, b) with each induction variable j
e i 1s basic mmduction variable; a and b are loop invariant.
e value of j at point of definitionisa + b * i

e j belongs to the family of i

Induction Variable Detection: Algorithm

Algorithm for mmduction variable detection:

e Scan statements of L for basic induction variables i
— for each 1, associate triple (i, 0, 1) "X +0 =«
— 1 belongs to 1ts own famuly.

e Scan statements of L for derived induction variables k:
1. there must be single assignment to k within L of the foormk = j * cor

k = j + d,3j 1saninduction variable; ¢, d loop-invariant, and

2. 1f j 1s a dertved induction variable belonging to the famuly of 1, then:

— the only definition of j that reaches k must be one in L, and
— no definition of i must occur on any path between definition of j and definition

of k
e Assume j associated with triple (1, a, b):j = a + b * i atpointof defi-
nition.
e Can determine triple for k based on triple for j and instruction defining k:
-k =7 * ¢c— (1, a*c, b*c)
-k =7 +d— (i1, a + d, b)

Induction Variable Detection: Example

s = 0;
for(i = 0; 1 < N; i++)
s += ali];
1 r1=0
v
2 12=0
v
Preheader:
v
3:| branchr2>=N
!
10: 4: 13=12%4
v
5: rd=13+a
v
6: 5 = M[r4]
v
7: rl=rl-+15
!
8: 12=12+1
v
9: jump

Strength Reduction

1. For each dertved induction variable j with triple (1, a, Db), create new j’.
e all dertved induction variables with same triple (i, a, b) may share j’

2. After each definitionofi n L, 1 = 1 + c, insert statement:
j’ = ' + b * c

e b * c 1s loop-invariant and may be computed m preheader or during compile
time.

3. Replace unique assignment to j with j = j’.
4. Initialize j’ at end of preheader node:

i’ = b * i
it =3+ a

e Strength reduction still requires multiplication, but multiplication now performed
outside loop.

e j’ alsohas triple (i, a, b)

Strength Reduction Example

l: rl

2: 12=0

=1 I =1 |

Preheader:

branch 12 >=N \
10: 4: 13=12%*4
v

5: 4=13+a
v

6: 15 = M][r4]
v

7: rl =1l +15 |
v

8: 12=12+1
v

9: jump

|)
| P

Strength Reduction

Example

1: r1=0
\l,'
2: 12=0
\l,'
Preheader: 133 =12 * 4
133=133+0
44 =12 * 4
144 =144 + a
[
3:| branch12>=N
\‘,'
10: 4 13 =133
I
5: r4 =144
'.‘,'
6: r5 = M[r4]
'.l,'
7: rl=rl+r15
-.‘,'
8: 1R2=12+1
\‘,'
8 133 =133 +4
!
8 144 =144 + 4
\l,'
9: jump

Induction Variable Elimination

After strength reduction has been performed:
e some 1nduction variables are only used in comparisons with loop-invariant values.
e some induction variables are useless

— dead on all loop exits, used only 1 definition of itself.

— dead code elimination will not remove useless induction variables.

Induction Variable Elimination Example

1: r1=10
2 2=0
]1|.
Preheader: $33=0
44 =a
[
3 branch r2 =>=N
_]
10: 5 rd =r44
& r5 =M[r4]
7 rl=rl+r13
a: m2=12+1
]1|.
8% 133=r33+4
87 44 =144 + 4
9: ump

Induction Variable Elimination

e Variable k 1s almost useless 1f 1t 1s only used in comparisons with loop-mvariant
values, and there exists another mnduction variable t in the same family as k that 1s
not useless.

e Replace k m comparison with t
— k 1s useless

Induction Variable Elimination: Example

1: rl=0
v

2: 2=0
v

Preheader:
r44=a

v

3: branch 12 >=N
¥

10: 5: 4 =144

v

6: 15 = M[r4]
v

7- rl =rl +15
¥

8: 2=1m12+1
¥

R 44 =144 + 4

v

9: jump

Induction Variable Elimination: Example

I: 11=0
v

2: 2=0
v

Preheader:
144 =a
rl00=4*N
r101 =r100 +a

W .

3:| branch r44 >=r101
v

10: 5: 14 =144

v

6: 15 = M][r4]
v

7T rl=r1+15
v

8: 12=12+1
v

8" 44 =144 + 4

v

9: jump

