Topic 9: Dataflow Analysis

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

Analysis and Transformation

e Analysis:
— Control Flow Analysis
— Dataflow Analysis

e Transformation:

— Register Allocation

— Optimization
« Machine dependent/independent
« Local/Global/Interprocedural
« Acyclic/Cyclic

— Scheduling

Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

r1=4

L

2=rl+5

|
| l |

K
|

r2=rl+5 2=9

| l

Needs dominator, liveness, and reaching definition information.

Dataflow Analysis Motivation

Register Allocation:

e Infinite number of registers (virtual registers) must be mapped to a limited number
of real registers.

e Pseudo-assembly must be examined by /ive variable analysis to determine which
virtual registers contain values which may be used later.

e Virtual registers which are not simultaneously /ive may be mapped onto the same
real register.

1 r2 = 1rl + 1
2 r3 = M[r2]
3 rd = r3 + 4

4 LOAD r5 = M[r2 + r4]

Dataflow Analysis

Three types we will cover:
e Live Vanable

— Live range for register allocation
— Scheduling

— Dead code elimination
e Reaching Definitions

— Constant propagation
— Constant folding

— Copy propagation
e Available expressions

— Common subexpression elimination

lterative Dataflow Analysis Framework

e These dataflow analyses are all very similar — define a framework.
e Specity:

— Two set definitions - Ajn| and B|n]

— A transfer function - f (A, B, IN/OUT)

— A confluence operator - V.

— A direction - FORWARD or REVERSE.

e For forward analyses:
IN[n| = VpeprEDmOUTp)

OUTn| = f(A B.IN)

e For reverse analyses:
OUT ['T?.-] =V s€SUCCn] IN [‘s]

IN['TI} = f(A.B.OUT)

Definitions

Control Flow Definitions:
e CFG node has ouf-edges leading to successor nodes.
e CFG node has in-edges coming from predecessor nodes.
e For each CFG node n, PRFE D|n| = set of all predecessors of n.

e For each CFG node n, SUC'C|n| = set of all successors of 7.

lterative Dataflow Analysis Framework

o [terative dataflow analysis equations are applied in an 1terative fashion until /N and
OUT" sets do not change.

e Typically done in (FORWARD or REVERSE) topological sort order of CFG for
efficiency.

e /N and OU'T sets initialized to ().

For each node n {
IN[n] = OUT[n] = {};
J
Repeat {
For each node n in forward/reverse topological order
IN’ [n] = IN[n];
OUT’ [n] = OUT [n];
IN[n], OUT[n] = (Equations) ;

}

} until IN’ [n] = IN[n] and OUT’ [n] = OUT[n] for all n.

Definitions for Liveness Analysis

Liveness Definitions:
e A source (RHS) register # 1s a use of 7.
e A destination (LHS) register ¢ 1s a definition of t.

e A register ¢ 1s /ive on edge e if there exists a path from e to a use of ¢ that does not
go through a definition of 7.

e Register 7 1s /ive-in at CFG node n 1f ¢ 1s live on any in-edge of n.

e Register ¢ 1s /ive-out at CFG node n 1f £ 1s live on any out-edge of n.

Definitions for Liveness Analysis

Live Variable Analysis Equation:
e Set definition (An|): USFE|n| - the set of registers that n uses.
e Set definition (B[n)): DE F'|n| - the set of registers that nn defines.
e Transfer function (f(A, B,OUT)): USEn| U (OUT |\n| — DEF|n|)
e Confluence operator (V): U

e Direction: REVERSE

OUTn| = Usesvccng I N3]
IN[n] = USE[n| U (OUT[n] — DEF[n))

Live Variable Analysis Example

I: r1=20
..l,
2: 12=rl1+1
b
3: r3=13+12
I
4: rl=r2%2
5:| branchrl <10,L1
6: 1‘6'[11;'{11 r3
Node |USE | DFEF| OUT IN OuT IN OuUT IN
|

SN i = Lo b

Live Variable Application 1: Register Allocation

Register Allocation:
1. Perform live variable analysis.
2. Build interference graph.

3. Color interference graph with real registers.

Interference Graph

e Node ¢ corresponds to virtual register ¢.
e Edge (t;,t,) exists if registers ;. ¢; have overlapping live ranges.

e For some node n, if DEF|n| = {a} and OUT'|n| = {by, ba, ...by.}, then add interter-
ence edges: (a, by), (a,bs), (a,by)

Interference Graph For Example:
Node | DEF |OUT IN

| rl |rl,r3 13
r2 |[r23 rl.3
r3 |[r2r3 r2.13
rl | rl,r3 r2.13
- [rl, 3 rl.r3
- 3

AN D =W N

Virtual registers rl and r2 may be mapped to same real registers.

Live Variable Application 2:

Dead Code Elimination

e (G1ven statement s with a definition and no side-effects:
rl = r2 + r3, rl = M[r2], or rl = r2
If rl 1s not live at the end of s, then the s 1s dead

e Dead statements can be deleted.

e (G1ven statement s without a definition or side-etfects:
rl = call FUN NAME, M[rl] = r2

Even 1f rl 1s not live at the end of s, 1t 1s not dead.

Example:

rl = 1r2 + 1
r2 = r2 + 2
rl = r2 + 3
M[rl] = r2

Reaching Definition Analysis

Determines whether definition of register ¢ directly affects use of ¢ at some point in pro-
gram.

Reaching Definition Definitions:
e unambiguous - instruction explicitly defines register ¢.
e ambiguous - instruction may or may not define register ¢.

— Global variables 1n a function call.
— No ambiguous definitions in tiger since all globals are stored in memory.

e Definition of d (of t) reaches statement u 1f a path of CFG edges exists from d to u
that does not pass through an unambiguous definition of £.

e One unambiguous and many ambiguous definitions of # may reach » on a single
path.

Reaching Definition Analysis

Reaching Definition Analysis Equation:
e Set definition (A[n|): GEN|n| - the set of definition id’s that n creates.
e Set definition (B|n|): K1LL|n| - the set of definition id’s that n klls.
— defs(t) - set of all definition id’s of register t.
e Transfer function (f(A, B.IN)): GEN|n|U (IN|n| — KILL|n|)
e Confluence operator (V): U

e Direction: FORWARD

IN[n| = Ueprepm OUT p|
OUTn] = GENn| U (IN[n] — KILL[n))

Reaching Definition Analysis Example

1:\ r1=35

|

2:\ 13=1 \
& . l

6:| r4=10 | ‘ branch 13 = rl. 6: ‘
! !

?:| rl=rl +r4 | 4:‘ B3=13+1 ‘
I)

8:| M[3]=r1 | 5| goto 3: |

Node | GEN |KILL IN OuUT IN OuUT IN OuUT

O~ O i & WMo

Reaching Definition Application 1:

Constant Propagation

e Given Statement d: a = ¢ where a 1s constant
e Given Statement u: t = a op b

e [f statement d reach v and no other definition of a reaches u, then replace u b
c op b.

l: r1=5
|
2: 13=1
L v
6: 14 =10 " 3:| branch13 >rl.6:
v |
7: rl=rl+r4 4: 13=13+1
v v
8: M[r3] =1l 5: goto 3:

Statements 1 and 6 are dead.

Constant Folding

e Given Statement d: t = a op b
e If a and b are constant, compute c asa op b, replace dbyt = c
2: 13=1
!
3:| branchr3 > 5. 6:
pd v
7: rl=5+10 4: 13=13+1
I !
8: M[r3]=rl 5: goto 3:

Common Subexpression Elimination

If x op vy 1s computed multiple times, common subexpression elimination (CSE) at-
tempts to eliminate some of the duplicate computations.

l: rl =M[A]
\

2 2=rl+10
s

3 3 =M[A]
)

4 4=13+1
s

5: =14 +12

Need to track expression propagation — available expression analysis

Definitions

e Expression x op v 1s available at CFG node n 1f, on every path from CFG entry

node to n, x op v i1s computed at least once, and neither x nor y are defined since
last occurrence of X op vy on path.

e Can compute set of expressions available at each statement using system of dataflow
equations.

e Statementrl = M[r2]:

— generates expression M[r2] .

— kills all expressions containing rl.
e Statement r1 = r2 + r3:

— generates expression r2 + r3.

— kills all expressions containing r1.

lterative Dataflow Analysis Framework

e Specity:
— Two set definitions - An| and B|n|
— A transfer function - f (A, B,IN/OUT)
— A confluence operator - \/ .
— A direction - FORWARD or REVERSE.

e For forward analyses:
INn| = VpepreppOUT p|
OUTn|=f(A B)
e For reverse analyses:
OUTn| = VsesvecpI N|s|
IN[n] = f (A, B)

Available Expression Analysis

Available Expression Analysis:
e cap(t) - set of all expressions containing 7.
e Set definition (A[n|): GEN|n| - the set of all expressions generated by 7.
e Set definition (B|n|): KILL|n| - the set of all expressions that n kills - exp(n).
e Transfer function (f(A, B, IN/OUT)): GEN|n| U (IN[n| — KILL|n|)
e Confluence operator (V): N

— Use of U, required 1nitialization of /N and OUT sets to ().

— Use of M, requires mitialization of /N and OUT sets to U (except for I[N of
entry node).

e Direction. FORWARD

IN {T?.] = pePREDIn] ouU'T LD}
OUTn] = GEN[n] U (IN[n] — KILL[n))

Example

Node | GEN KILL IN OUT

| M[A] | r1+12, r1+12, 13411 | - U

1: rl = M[A] 2 M[B] rl+r2 U U

! 3 | rl+r2 r3+rl v v

2: 12 = M[B] 4 r3+rl U U

v 5 v U

3: r3=rl+12 6 rl+r2, r3+rl, r1+12 | U U

v 7 | rl+12 u U

4: r4 =13 +1l 8 | rl+r2 M[15] u U

v 9 M[A]. M[B].M[r5]| U U

5: branch 13 > 12
_ Node |GEN | KILL |IN OUT

6: rl=rl+12 1 | 378.6. 4| - U
v 2 2 378 uv U
7 d=rl +12 3 378 4 uv U
N —— 4 4 U v
8: S=rl+12 5 U U
v 6 378,4,6|U U
9 M[r5] =14 7 378 U U
8 378 9 u U
9 1,2,9 (U U

Example

Node |GEN| KILL |IN OUT

| | 378,4.6| - U

1- rl = M[A] 2 2 378 U U

V 3 378 4 U U

2: 12 = M[B] 4 4 v v

7 5 U v

3: 3=rl +12 6 378.4.6 | U U

v 7 378 U U

4: 4 =13 +rl 8 378 9 U [/

v 9 1,2,9 |U U

5: branch 13 > 12
L Node IN OUT IN OUT

6 rl=rl+12 1
v 2
7: 4=r1l +12 3
- i 4
8: ry=rl +12 5
v 6
9: M[r5] =14 7
8
9

Common Subexpression Elimination (CSE)

Given statement s: £ = X op V:
If expression x op vy 1s available at beginning of node s then:

1. starting from node s, traverse CFG edges backwards to find last occurrence of
X op Yy on each path from entry node to s.

2. create new temporary w.

3. for each statement s: v = x op vy found in (1), replace s’ by:
W =X Op vV
Vo= W

4. replace statement sby: t = w

CSE Example

| rl = M[A]

2: 2 = M[B]
v

3: 3=rl +12
v

4. 4 =13 +rl
v

5: branch r3 > 12

P

6: rl=rl +12

7: 4=rl+12
8: 5=rl+12
9: M[r3] =14

rl + r2innode 8is a common subexpression.

Copy Propagation

e Given statement d: a = 2z (a and z are both register temps) — d 15 a copy state-
ment.
e Given statement u: t = a op b.
e If d reaches u, no other definition of a reaches u, and no definition of z exists on
any path from d to u, then replace uby: t = z op b.
1: rl = M[A]
b
2: 2=M][B]
I
3: 199 =11 +12
I
3% r3 =199
I
4: 4=r3+rl
I
5: branch 13 > 12
6: rl=r1+12
I ~
7: 199 =rl1 +12 8- 5 =199
! !
7 =9 0: M[r5] =4

Sets

e Sets have been used 1n all the dataflow and control flow analyses presented.
e There are at least 3 representations which can be used:
— Bit-Arrays:
« Each potential member 1s stored 1n a bit of some array.
« Insertion, Member 1s O(1).
« Assuming set size of /N and word size of 1V - Union (OR) and Intersection
(AND) 1s O(N/W).
— Sorted Lists/Trees:
« Each member 1s stored 1n a list element.
« Insertton, Member, Union, Intersection 1s O(size). (Insertion, Member 1s
O(logsy size) 1n trees.)
« Better for sparse sets than bit-arrays.
— Hybrids: - Trees with bit-arrays
« Use Tree to hold elements containing bit-arrays.
+ Union, Intersection 1s O(size/W). Insertion, Member 1s O (log, size /).

Basic Block Level Analysis

e To improve performance of dataflow, process at basic block level.

— Represent the entire basic block by a single super-instruction which has any num-
ber of destations and sources.
— Run dataflow at basic block level.

— Expand result to the instruction level.

e Example:

p: rl r2 + r3 -> rl, r2 = r2, r3
n: r2 = ril

Basic Block Level Analysis

e Example:
P: rl1 = r2 + r3 -> rl, r2 = r2, r3
n: r2 =rl

e For reaching definitions:
OUT|n| = GEN[n| U (IN|n| — KILL|n|)
But IN[n| = OUT|p|:
OUT|n| = GEN[n|U((GEN|p|U(IN|p| — KILL|p|)) — KILL|n|)

Which (clearly) yields:

OUTn| = GEN[n|U(GEN|p| — KILLn|) U (IN|p| — (KILL|p|U KILL|n|))
So:

GEN|pn| = GEN[n|U (GEN|p| — KILL|n])
KILL|pn| = KILL|p|U KILL|n|

e Can we do this at the loop or general region level?

Reducible Flow Graphs Revisited

Definition
e A flow graph 1s reducible 1ff each edge exists in exactly one class:

1. Forward edges (forms an acyclic graph where every node 1s reachable from start
node)

2. Back edges (head dominates tail)
Algorithm:
1. Remove all backedges
2. Check for cycles:

e Cycles: Irreducible.
e No Cycles: Reducible.

Think:

e All loop entry arcs point to header.

Reducible Flow Graphs — Structured Programs

Motivation:

e Structured programs are always reducible programs.

e Reducible programs are not always structured programs.

e Exploit the structured or reducible property in dataflow analysis.
Structures:

e Lists of instructions

e Conditionals/Hammocks

e While Loops (no breaks)
Method:

e Represent structures by a single super-instruction which has any number of destina-
tions and sources.

e Run dataflow at structure level.

e Expand result to the instruction level.

Structured Program Analysis

e Lists of instructions - Basic Blocks!
GEN|pn| = GEN|n|U(GEN|p| — KILL|n|)
KILL|pn| = KILL|p| U KILL|n|
e Conditionals/Hammocks
GEN|lr| = GEN|[|UGEN|r|
KILL|lr| = KILL[l| " KILL|r|

e While Loops
GEN |loop] = GEN!]

KILL[loop| = KILL|l]

Try this on an irreducible flow graph...

Conservative Approximations Example

Register Allocation:

0: rl =1

1: branch ???

2: rl=rl+1

3: branch rl <3

— —)

4: branchrl <5

TAKEN/TRUE _—

5: =rl 6:

New Dataflow Analysis

rl=1

v

branch ?7?7?

rl=rl +1

v

3

branch rl -

.f/z

— }_‘i TAKEN/TRUE

4:

M
N

branch rl <

TAKEN/TRUE _—

=1l

Limitation of Dataflow Analysis

rl - 1'2 H 1'2

P—

branch 3 >=12

|-
. 3=r
3:

4: .

5: -

