Analysis and Transformation

Topic 9: Dataflow Analysis
COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

Dataflow Analysis Motivation

e Analysis:
— Control Flow Analysis
— Dataflow Analysis

e Transformation:

— Register Allocation

— Optimization
+ Machine dependent/independent
x Local/Global/Interprocedural
* Acyclic/Cyclic

— Scheduling

Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

Needs dominator, liveness, and reaching definition information.

Register Allocation:

e Infinite number of registers (virtual registers) must be mapped to a limited number
of real registers.

e Pseudo-assembly must be examined by /ive variable analysis to determine which
virtual registers contain values which may be used later.

e Virtual registers which are not simultaneously /ive may be mapped onto the same
real register.

1 r2 =rl + 1

2 r3 M[r2]

3 r4 = r3 + 4

4 LOAD r5 = M[r2 + r4]

Dataflow Analysis

lterative Dataflow Analysis Framework

Three types we will cover:
e Live Variable

— Live range for register allocation
— Scheduling
— Dead code elimination

e Reaching Definitions

— Constant propagation
— Constant folding
— Copy propagation

e Available expressions

— Common subexpression elimination

Definitions

e These dataflow analyses are all very similar — define a framework.
e Specify:

— Two set definitions - A[n| and B|n|

— A transfer function - f (A, B, IN/OUT)

— A confluence operator - V.

— A direction - FORWARD or REVERSE.

e For forward analyses:
I.-“r\“r[ﬂ} = vaPRED[n: @) L"T'T[p]
OUTn] = f(A B, IN)
e For reverse analyses:

()[’TT[H} - \/565[500[71:15\"?[5}

IN[n] = f (A, B,OUT)

lterative Dataflow Analysis Framework

Control Flow Definitions:
e CFG node has out-edges leading to successor nodes.

e CFG node has in-edges coming from predecessor nodes.

e For each CFG node n, PRE D[n| = set of all predecessors of n.

e For each CFG node n, SUCC'[n| = set of all successors of n.

o [terative dataflow analysis equations are applied in an iterative fashion until /N and
OUT sets do not change.

o Typically done in (FORWARD or REVERSE) topological sort order of CFG for
efficiency.

o /N and OUT sets 1nitialized to ().

For each node n f{
IN[n] = OUT[n] = {};
}
Repeat {
For each node n in forward/reverse topological order ({
IN' [n] = INI[n];
OUT’ [n] = OUTI[nl];
IN[n], OUTI[n] = (Equations);

}

} until IN’ [n] = IN[n] and OUT’ [n] = OUT[n] for all n.

Definitions for Liveness Analysis

Definitions for Liveness Analysis

Liveness Definitions:
e A source (RHS) register ¢ is a use of ¢.
e A destination (LHS) register ¢ is a definition of t.

e A register ¢ is /ive on edge e if there exists a path from e to a use of ¢ that does not
go through a definition of .

e Register ¢ is /ive-in at CFG node n if' ¢ is live on any in-edge of n.

e Register ¢ 1s /ive-out at CFG node n if ¢ is live on any out-edge of n.

Live Variable Analysis Example

5

:| branchrl <10.L1

Node |USE|DEF| OUT IN OouUT IN OuT IN

Live Variable Analysis Equation:
e Set definition (A[n]): USE[n] - the set of registers that n uses.
e Set definition (B[n]): DE F[n] - the set of registers that n defines.
e Transfer function (f(A, B,OUT)): USE[n| U (OUT[n| — DEF|n])
e Confluence operator (V): U
e Direction: REVERSE

()L‘T'T{TI] = U.SGSU(‘(‘[H: IN [S}
IN[n] =USEn|U(OUT n] — DEFn])

Live Variable Application 1: Register Allocation

(@)W NN I (]

Register Allocation:
1. Perform live variable analysis.
2. Build interference graph.

3. Color interference graph with real registers.

Interference Graph Live Variable Application 2:

Dead Code Elimination

e Given statement s with a definition and no side-effects:

e Node ¢ corresponds to virtual register ¢. rl = 2 + r3, rl = M[r2], or rl = r2
e Edge (t;,1;) exists if registers ¢;, t; have overlapping live ranges.

e For some node n, if DEF[n] = {a} and OUT[n] = {by, ba, ...b;.}, then add interfer- Ifrl is not live at the end of s, then the s is dead

ence edges: (a,by) . (a,by) , (a,by) e Dead statements can be deleted.
Interference Graph For Example: ¢ Given statement s without a definition or side-effects:
Node | DEF |OUT IN
1 rl |rlr3 13 rl = call FUN NAME, MI[rl] = r2
2 r2 | r2,r3 rlr3
3 3 (1213 1213 Even if rl is not live at the end of s, it 1s not dead.
4 rl [rl,r3 213
S B P IO Example:
6 - r3 rl = r2 + 1
r2 = r2 + 2
rl = r2 + 3

Virtual registers rl and r2 may be mapped to same real registers. M[rl]l] = r2

Reaching Definition Analysis Reaching Definition Analysis

Determines whether definition of register ¢ directly affects use of ¢ at some point in pro-

grat Reaching Definition Analysis Equation:

Reaching Definition Definitions: e Set definition (A[n]): GEN|[n] - the set of definition id’s that n creates.
o unambiguous - instruction explicitly defines register . e Set definition (B[n]): KILL[n]| - the set of definition id’s that n kills.
e ambiguous - instruction may or may not define register ¢. — de fs(t) - set of all definition id’s of register t

_ Global variables in a function call. e o o) i
riobal varables . a tunetion ca e Transfer function (f(A, B, IN)): GEN[n| U (IN[n| — KILL[n])

— No ambiguous definitions in tiger since all globals are stored in memory.
. - . o o C e o Confluence operator (V): U
e Definition of d (of t) reaches statement u it a path of CFG edges exists from d to u P V)

that does not pass through an unambiguous definition of ¢. e Direction: FORWARD

e One unambiguous and many ambiguous definitions of ¢ may reach u on a single . .
IN [ﬂ} = UpePRED[) OU T[p}

path.
OUT[n] = GEN[n]U (IN[n]| — KILL[n])

Reaching Definition Application 1:

Reaching Definition Analysis Example Constant Propagation

1: rl=5

2 51 e Given Statement d: a = c where a is constant
6| 1-47 w | [bech3ra6 | e Given Statementu: £t = a op b
7 “‘:‘f*“ | 4 "3:1“1 \ o If statement d reach u and no other definition of a reaches u, then replace u b
8: ‘ M[13] =1l ‘ 5:‘ goto 3: ‘ Cc op b.

Node | GEN |KITLL IN ouT IN ouT IN ouT
|
2
3
4
5 s mmi-n | s eoos]
6
7
8
Statements 1 and 6 are dead.
Constant Folding Common Subexpression Elimination
e Given Statement d: t = a op Db If x op y is computed multiple times, common subexpression elimination (CSE) at-
o If a and b are constant, compute c asa op b,replacedbyt = ¢ tempts to eliminate some of the duplicate computations.
* 11 rl=MA]
& v
7] q=310 |] p=n+l] 2:‘ 2=11+10 ‘
! v
8:| M[r3]=rl | 5:‘ goto 3: ‘ 3 ‘ 3= M[A] ‘
v
4: ‘ 4=13+1 ‘

v

5:‘ 5=r4+12

Need to track expression propagation — available expression analysis

Definitions lterative Dataflow Analysis Framework

e Specify:
e Expression x op v is available at CFG node n if, on every path from CFG entry

node to n, x op vy is computed at least once, and neither x nor y are defined since — Two set d Qﬁnit ions - A {TI] and B {n]
last occurrence of X op vy on path. _A J‘mnsferﬁmcﬁon) f (A, B, L\-“Y/OL’YT)
e Can compute set of expressions available at each statement using system of datatlow A ator - \/
equations. — A confluence operator - \/ .
o Statement r1 = M[r2]: — A direction - FORWARD or REVERSE.
— generates expression M [r2] . e For forward analyses:
— kills all expressions containing r1. IN[n|=v pePRED[n] OUTp|
e Statement r1 = r2 + r3: OUTn| = f(~l B)

— generates expression r2 + r3.

— kills all expressions containing r1. e For reverse analySES:

O [/'TT[T?} - \/SESU@@[H:IJ‘\"‘Y[.S‘}
IN[n] = f (A, B)

Available Expression Analysis Example
Available Expression Analysis: Node | GEN KILL IN OUT
) L 1 M[A] | r1+4r2, r1+12, 13411 | - U
e cxp(t) - set of all expressions containing ¢. L 2 | MB] 142 7
o Set definition (A[n]): GEN|n] - the set of all expressions generated by n. jt rif? r3trl
2: r3+r

o Set definition (B[n]): KILL[n| - the set of all expressions that n kills - exp(n).
e Transter function (f (A, B, IN/OUT)): GEN[n|U (IN[n| — KILL[n]) >

e Confluence operator (V): N 4:

rl+r2, r3+rl, rl+12

rl+r2 M[r5]
M[A]. M[B]. M[r5]

~ N~~~ ~ L~~~
D e T B B R

;
6
7 rl+r2
8
9

— Use of U, required initialization of /N and OUT sets to (). 5[branch3 > 12

— Use of N, requires initialization of /N and QU7 sets to U (except for [N of Node| GEN | KTLL |IN OUT

entry node). & ! Lopsed- U

2 2 378 v v

e Direction: FORWARD 7: 3 378 4 U v

4 4 U v

IA‘?\“Y [‘7?} = mpEPRED[ni ()LVT[]?} 5 U U

.))) 6 378,46\ U U

OUT[n| = GEN[n|U (IN[n] — KILL[n]) 7 | 378 U oU

8 9 v U

9 ,2,9 (U U

Common Subexpression Elimination (CSE)

ouT

Example
Node | GEN| KILL |IN OUT
1 1 378.4,6| - U
1: 2 2 378 U U
3 378 4 U U
2: 4 4 U U
5 U U
3: 6 378,4,6| U U
7 378 U U
4: 8 378 9 U U
9 1,2,9 | U U
5: branch 13 > 12
Node IN ouT IN
2
8: 15=rl+12 5
6
9: 7
8
9

CSE Example

Given statement s: t = x op y:
If expression x op v is available at beginning of node s then:

1. starting from node s, traverse CFG edges backwards to find last occurrence of
x op vy on each path from entry node to s.

2. create new temporary w.

3. for each statement s": v = x op y found in (1), replace s’ by:
W =X O0p Yy
V=W

4. replace statement s by: t = w

Copy Propagation

branch r3 > 12
6: rl=r1+12

5=rl+12

rl + r2innode 8is a common subexpression.

e Given statement d: a = z (a and z are both register temps) — d is a copy state-
ment.

e Given statement u: t = a op b.

o If d reaches u, no other definition of a reaches u, and no definition of z exists on
any path from d to u, then replace uby: t = z op b.

rl=r1+12

. 00 =] =17 S
[wo=n-a g\

9: M[r5] =14

Sets

o Sets have been used in all the dataflow and control flow analyses presented.
o There are at least 3 representations which can be used:
— Bit-Arrays:
+ Each potential member is stored in a bit of some array.
+ Insertion, Member 1s O(1).
* Assuming set size of NV and word size of 117 - Union (OR) and Intersection
(AND) 1s O(N/W).
— Sorted Lists/Trees:
+ Each member is stored in a list element.
+ Insertion, Member, Union, Intersection is O(size). (Insertion, Member is
O(logy size) 1n trees.)
* Better for sparse sets than bit-arrays.
— Hybrids: - Trees with bit-arrays
+ Use Tree to hold elements containing bit-arrays.
s Union, Intersection is O(size /W). Insertion, Member is O(log, size/TV).

Basic Block Level Analysis

Basic Block Level Analysis

e Example:
p: rl = r2 + 3 -> rl, r2 = r2, 3
n: r2 = rl

e For reaching definitions:
OUT[n] = GEN[n|U (IN[n| — KILL[n])
But IN[n] = OUT[p:
OUTn]=GENR]U(GEN[p|U(INI[p] — KILL[p|)) — KILL[n])

Which (clearly) yields:

OUTn] = GEN[n|U (GEN|p] — KILL[n])U (IN[p| — (KILL[p| U KILLIn]))
So:

GENpn| = GEN[n]U(GENIp| — KILL[n])
KILL[pn] = KILL[p| U KILL[n|

e Can we do this at the loop or general region level?

e To improve performance of dataflow, process at basic block level.
— Represent the entire basic block by a single super-instruction which has any num-
ber of destinations and sources.
— Run dataflow at basic block level.

— Expand result to the instruction level.

e Example:
p: rl = r2 + r3 -> rl, ¥r2 = r2, r3
n: r2 = rl

Reducible Flow Graphs Revisited

Definition
e A flow graph is reducible ift each edge exists in exactly one class:

1. Forward edges (forms an acyclic graph where every node is reachable from start
node)

2. Back edges (head dominates tail)
Algorithm:
1. Remove all backedges
2. Check for cycles:

e Cycles: Irreducible.
e No Cycles: Reducible.

Think:

e All loop entry arcs point to header.

Reducible Flow Graphs — Structured Programs

Motivation:

e Structured programs are always reducible programs.

e Reducible programs are not always structured programs.

e Exploit the structured or reducible property in dataflow analysis.
Structures:

e Lists of instructions

e Conditionals/Hammocks

e While Loops (no breaks)
Method:

e Represent structures by a single super-instruction which has any number of destina-
tions and sources.

e Run dataflow at structure level.

e Expand result to the instruction level.

Conservative Approximations Example

Structured Program Analysis

Register Allocation:

1:

branch ???

3 branch rl <3
\ %

T TAKEN/TRUE
4 branchrl <35
TAKENTRUE _— —

5: =rl 6: =12

e Lists of instructions - Basic Blocks!
GEN|[pn| = GENn|U(GEN|p] — KILL[n])
KILL[pn| = KILL[p| U KILL[n|
e Conditionals/Hammocks
GEN]|lr] = GEN|l|UGEN|r|
KILL[ly) = KILL[l| " KILLr|

e While Loops
GEN]loop] = GEN|I]
KILL[loop) = KILL|l|

Try this on an irreducible flow graph...

New Dataflow Analysis

0| =1 |
!
1: ‘ braﬁl}ch 227 ‘
‘/ 2 neEn+1 |
| ! |
\“\ 3: ‘ branch r1 < 3 ‘ //"‘I
o T:&KE;\TRLE
4: ‘ branch r1 < 3 ‘
TAKEN/TRUE
5: =rl ‘ 6: ‘ =12

Limitation of Dataflow Analysis

'

1:‘ rl=12*12 ‘

'

2:‘ r3=rl +12 ‘

'

3: ‘ branch r3 >=12 ‘

TAKEN/TRUE \

4:‘ =rl ‘ 5:‘ =13

