Topic 7:
Intermediate Representations

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August



Intermediate Representations

Stream of

Tokens

Source
Lexer -

—»

Parser

Abstract
Syntax Tree

Intermediate Representation (IR):

e An abstract machine language

e Expresses operations of target machine

e Not specific to any particular machine

e Independent of source language

IR code generation not necessary:

Semantic
Analysis

IR’

Back End

e Semantic analysis phase can generate real assembly code directly:.

e Hinders portability and modularity.

Target



Intermediate Representations

Suppose we wish to build compilers for n source languages and m target machines.
Case 1: no IR

e Need separate compiler for each source language/target machine combination.
e A total of n * m compilers necessary.

e Front-end becomes cluttered with machine specific details, back-end becomes clut-
tered with source language specific details.

Case 2: IR present

e Need just n front-ends, m back ends.



Intermediate Representations

Java Sparc
ML
\ [~ Mips

Pascal — IR

/ \ Pentium
C

Alpha

/

C++

FIGURE 7.1. Compilers for five languages and four target machines:
(left) without an IR, (right) with an IR.
From Modern Compiler Implementation in ML,
Cambridge University Press, ©1998 Andrew W. Appel




Properties of a Good IR

e Must be convenient for semantic analysis phase to produce.

e Must be convenient to translate into real assembly code for all desired target ma-
chines.
— RISC processors execute operations that are rather simple.
+x Examples: load, store, add, shift, branch
« IR should represent abstract load, abstract store, abstract add, etc.
— CISC processors execute more complex operations.

+x Examples: multiply-add, add to/from memory

« Simple operations m IR may be “clumped” together during instruction selec-
tion to form complex operations.



IR Representations

The IR may be represented in many forms:

Expression trees:
e exp: constructs that compute some value, possibly with side effects.
e stm: constructs that perform side etfects and control flow.

signature TREE = sig

datatype exp = CONST of int

NAME of Temp.label

TEMP of Temp.temp

BINOP of binop * exp * exp
MEM of exp

CALL of exp * exp list
ESEQ of stm * exp




IR Expression Trees

TREE continued:

end

and stm

and binop

and relop

MOVE of exp * exp

EXP of exp

JUMP of exp * Temp.label 1list

CJUMP of relop * exp * exp *
Temp.label * Temp.label

SEQ of stm * stm

LABEL of Temp.label

PLUS |MINUS |MUL |DIV |AND |OR |

LSHIFT |RSHIFT|ARSHIFT |XOR

EQ|NE|LT|GT|LE|GE |ULT |ULE | UGT | UGE



Expressions

Expressions compute some value, possibly with side effects.

CONST (7) integer constant :

NAME () symbolic constant n corresponding to assembly language label (abstract
name for memory address)

TEMP (¢) temporary ¢, or abstract/virtual register ¢
BINOP (op, ey, e3) €1 0p es, eq evaluated before e
e integer arithmetic operators: PLUS, MINUS, MUL, DIV
e integer bit-wise operators: AND, OR, XOR
e integer logical shift operators: LSHIFT, RSHIFT
e integer arithmetic shift operator: ARSHIFT



Expressions

MEM (e) contents of wordSize bytes of memory starting at address e

e wordSize is defined in Frame module.
e i1f MEM 1s used as left operand of MOVE statement = store
e 1f MEM 1s used as right operand of MOVE statement = load

CALL (f, [) application of function f to argument list /
e subexpression f 1s evaluated first
e arguments 1n list / are evaluated left to right

ESEQ (s, e) the statement s evaluated for side-eftects, e evaluated next for result



Statements

Statements have side effects and perform control flow.
MOVE (TEMP (f) , e) evaluate ¢ and move result into temporary 7.

MOVE (MEM (e1) , e9) evaluate e, yielding address a; evaluate eo, store result in
wordSize bytes of memory stating at address «

EXP (e) evaluate expression e, discard result.
JUMP (e, labs) jump to address e
e ¢ may be literal label (NAME (/) ), or address calculated by expression

e [abs specifies all locations that e can evaluate to (used for datatlow analysis)
e jump to literal label [: JUMP (NAME (/) , [[])

CJUMP (op, e1, ez, t, f) evaluate ey, then es; compare results using op; if true,
jump to ¢, else jump to f
e EQ. NE: signed/unsigned integer equality and non-equality
e LT, GT, LE, GE: signed integer inequality
e ULT, UGT, ULE, UGE: unsigned integer inequality



Statements

SEQ (s1, so) statement s followed by s

LABEL (/) label definition - constant value of / defined to be current machine code
address

e similar to label definition in assembly language
e use NAME (/) to specify jump target, calls, etc.
e The statements and expressions in TREE can specify function bodies.

e Function entry and exit sequences are machine specific and will be added later.



Translation of Abstract Syntax

e if Absyn.exp computes value = Tree.exp
e if Absyn . exp does not compute value = Tree.stm

e if Absyn.exp has boolean value = Tree.stmand Temp.labels

datatype exp = Ex of Tree.exp
| Nx of Tree.stm

Cx of Temp.label * Temp.label -> Tree.stm

e Ex “expression” represented as a Tree . exp
e Nx “no result” represented as a Tree . stm

e Cx “conditional” represented as a function. Given a false-destmation label and a
true-destination label, 1t will produce a Tree . stm which evaluates some condi-
tionals and jumps to one of the destinations.



Translation of Abstract Syntax (Conditionals)

Conditional:

X > V:
Cx(fn (t, f£) => CJUMP(GT, x, v, t, f))

a>b|c<d:
Cx(fn (t, f£) => SEQ(CJUMP (GT, a, b, t, z),
SEQ (LABEL =z, CJUMP (LT, <, d, t, £))))

May need to convert conditional to value:

a := X > Vy:

Cx corresponding to “x > y” must be converted into Tree . exp e.
MOVE (TEMP (a) , e)

Need three conversion functions:

val unkEx: exp -> Tree.exp
val unNx: exp -> Tree.stm
val unCx: exp -> (Temp.label * Temp.label -> Tree.stm)



Translation of Abstract Syntax (Conditionals)

The three conversion functions:

val unkEx: exp -> Tree.eXp
val unNx: exp -> Tree.stm
val unCx: exp -> (Temp.label * Temp.label -> Tree.stm)

a := X > V:
MOVE (TEMP (a) , unEx(Cx(t,f) => ...)

unEx makes a Tree . exp even though e was Cx.



Translation of Abstract Syntax

Implementation of function UnEx:

structure T = Tree

fun unkEx (Ex(e)) = e
| unEx(Nx(s)) = T.ESEQ(s, T.CONST(0))
| unEx (Cx (genstm)) =
let val r = Temp.newtemp ()
val t = Temp.newlabel ()
val £ = Temp.newlabel ()

in T.ESEQ(seq[T.MOVE (T.TEMP(r), T.CONST (1)),
genstm(t, £f),
T.LABEL (f) ,
T.MOVE (T.TEMP(r), T.CONST(0)),
T.LABEL (t) ],
T.TEMP (r) )
end



Translation of Abstract Syntax

e Recall type and value environments tenv, venv.

e The function transVar return a record {exp, ty} of
Translate.exp and Types.ty.

e exp 1s no longer a place-holder



Simple Variables

e Case 1: variable v declared 1n current procedure’s frame

InFrame (k) :
MEM (BINOP (PLUS, TEMP (FP), CONST (k) ))

k: offest in own frame
FP 1s declared in FRAME module.

e Case 2: variable v declared in temporary register

InReg (t 103):
TEMP (t 103)



Simple Variables

e Case 3: variable v not declared in current procedure’s frame, need to generate IR
code to follow static links

InFrame (k n) :
MEM (BINOP (PLUS, CONST(k n),
MEM (BINOP (PLUS, CONST(k n-1),

MEM (BINOP (PLUS, CONST(k 2),
MEM (BINOP (PLUS, CONST(k 1), TEMP(FP)))))))))

, K 2,..., kn-1: static link offsets

k1
kK n: offset of v in own frame



Simple Variables

To construct simple variable IR tree, need:
o [;: level of function f 1n which v used
e [,: level of function g 1n which v declared
e MEM nodes added to tree with static link offsets (k_1, .., k.n-1)

e When [, reached, offset k_n used.



Array Access

Given array variable a,

&(af[0]) = a
&(alll]) = a + w, where w is the word-size of machine
&(al2]) = a + (2 * w)

Let e be the IR tree for a:

ali]:
MEM (BINOP (PLUS, e, BINOP (MUL, i, CONST (w))))

Compiler must emit code to check whether i 1s out of bounds.



Record Access

type rectype = {fl:int, f2:int, £3:int}

offset: 0 1 2

var a:rectype := rectype{fl=4, f2=5, f3=6}
Let e be IR tree for a:

a.f3:
MEM (BINOP (PLUS, e, BINOP (MUL, CONST(3), CONST(w))))

Compiler must emut code to check whether a 1snil.



Conditional Statements

1f e then ey else e3
e Treat ¢ as Cx expression = apply unCx.
e Treat e, 3 as EX expressions = apply unEx.

ExX (ESEQ (SEQ (unCx (el) (t, £),
SEQ (LABEL (t) ,
SEQ (MOVE (TEMP (r) , unEx(e2)),
SEQ (JUMP (NAME (join) ),
SEQ (LABEL (f) ,
SEQ (MOVE (TEMP (r) ,
LABEL (join)))))))
TEMP (r) ) )

unkEx (e3) ),



Strings

e All string operations performed by run-time system functions.

e In Tiger, C, string literal 1s constant address of memory segment 1nitialized to char-
acters 1 string.

— In assembly, label used to refer to this constant address.

— Label definition includes directives that reserve and initialize memory.
‘‘foo'':
1. Translate module creates new label /.
2. Tree .NAME (/) returned: used to refer to string.

3. String fragment “foo” created with label [. Fragment 1s handed to code emutter,
which emaits directives to initialize memory with the characters of “foo” at address /.



Strings

String Representation:
Pascal fixed-length character arrays, padded with blanks.
C variable-length character sequences, terminated by /000’
Tiger any 8-bit code allowed, including /000’
"fo0"

label:

Q| O | W




Strings

e Need to invoke run-time system functions

— string operations

— string memory allocation

e TFrame.externalCall: string * Tree.exp -> Tree.exp

Frame.externalCall ("stringEqual", [sl, s2])

— Implementation takes into account calling conventions of external functions.

— Easiest implementation:

fun externalCall(s, args) =
T.CALL (T.NAME (Temp .namedlabel (s) ), args)



Array Creation

type intarray = array of int
var a:intarray := intarray[10] of 7

Call run-time system function initArray to malloc and initialize array.

Frame.externalCall ("initArray", [CONST(10), CONST(7)])



Record Creation

type rectype = { fl:int, f2:int, f3:int }
var a:rectype := rectype{fl = 4, f2 = 5, f3 = 6}

ESEQ (SEQ( MOVE (TEMP (result) ,
Frame.externalCall ("allocRecord",
[CONST (12) 1)),

SEQ ( MOVE (BINOP (PLUS, TEMP (result), CONST (0*w)),

(P
CONST (4) ),
SEQ ( MOVE (BINOP (PLUS, TEMP (result), CONST (1l*w)),
CONST (5) ),
SEQ ( MOVE (BINOP (PLUS, TEMP (result), CONST (2*w)),
(6

CONST
TEMP (result) )

))))) ),

e allocRecord is an external function which allocates space and returns address.

e result 1s address returned by allocRecord.



While Loops

One layout of a while loop:

while CONDITION do BODY

test:
if not (CONDITION) goto done

BODY
goto test
done:

A break statement within body i1s a JUMP to label done.
transExp and transDec need formal parameter “break’:

e passed done label of nearest enclosing loop

e needed to translate breaks into appropriate jumps

e when translating while loop, t ransExp recursively called with loop done label in
order to correctly translate body.



For Loops

Basic idea: Rewrite AST 1into let/while AST; call transExp on result.

for 1 := lo to hi do
body

Becomes:

let
var 1 := 1o
var limit := hi
in
while (1 <= limit) do
(body;
1 := 1 + 1)
end

Complication:
[flimit == maxint, then increment will overflow 1n translated version.



Function Calls

f(al, a2, ..., an) =>
CALL (NAME (1 f), sl::[el, e2,

e =1 static link of £ (computable at compile-time)

e To compute static link, need:

—1_f:level of

— 1_g: level of g, the calling function

e Computation similar to simple variable access.

en] )



Declarations

Consider type checking of “let” expression:

fun transExp (venv, tenv) =

| trexp (A.LetExp{decs, body, pos}) =
let
val {venv = venv’, tenv = tenv’} =
transDecs (venv, tenv, decs)
in
transExp (venv’, tenv’) body
end

e Need level, break.

e What about variable mnitializations?



Declarations

Consider type checking of “let” expression:

fun transExp (venv, tenv) =

| trexp (A.LetExp{decs, body, pos}) =

let
val {venv = venv’, tenv = tenv’} =
transDecs (venv, tenv, decs)
in
transExp (venv’, tenv’) body
end

e Need level, break.

e What about variable mnitializations?



Function Declarations

e Cannot specify function headers with IR tree, only function bodies.
e Special “glue” code used to complete the function.

e Function 1s translated into assembly language segment with three components:

— prologue
— body
— epilogue



Function Prolog

Prologue precedes body in assembly version of function:
1. Assembly directives that announce beginning of function.
2. Label definition for function name.
3. Instruction to adjust stack pointer (SP) - allocate new frame.

4. Instructions to save escaping arguments into stack frame, instructions to move non-
escaping arguments into fresh temporary registers.

5. Instructions to store into stack frame any callee-save registers used within function.



Function Epilog

Epilogue follows body in assembly version of function:
6. Instruction to move function result (return value) into return value register.
7. Instructions to restore any callee-save registers used within function.
8. Instruction to adjust stack pointer (SP) - deallocate frame.
9. Return 1nstructions (jump to return address).

10. Assembly directives that announce end of function.

e Steps 1, 3, 8, 10 depend on exact size of stack frame.
e These are generated late (after register allocation).
e Step 6:

MOVE (TEMP (RV) , unEx (body))



Fragments

signature FRAME = sig

datatype frag = STRING of Temp.label * string
| PROC of {body:Tree.stm, frame:frame}
end

e Each function declaration translated into fragment.
e Fragment translated into assembly.
e body field 1s instruction sequence: 4, 5, 6, 7

e frame contains machie specific information about local variables and parameters.



Problem with IR Trees

Problem with IR trees generated by the Translate module:
e Certain constructs don’t correspond exactly with real machine nstructions.
e Certain constructs interfere with optimization analysis.

e CJUMP jumps to either of two labels, but conditional branch instructions in real
machine only jump to one label. On false condition, fall-through to next instruction.

e ESEQ, CALL nodes within expressions force compiler to evaluate subexpression
in a particular order. Optimization can be done most efficiently 1f subexpressions
can proceed 1n any order.

e CALL nodes within argument list of CALL nodes cause problems if arguments passed
in specialized registers.

Solution: Canonicalizer



Canonicalizer

Stream of Abstract

Source Tokens Syntax Tree Semantic | IR Trees Canon- IR Trees Target
— = Lexer Parser - . o Back End————
Analysis icalizer

Canonicalizer takes Tree . stm for each function body, applies following transforms:
l. Tree.stmbecomes Tree.stm list, list of canonical trees. For each tree:

e No SEQ, ESEQ nodes.
e Parent of each CALL node1s EXP(...) orMOVE (TEMP (t), ...)

2. Tree.stm list becomes Tree.stm list 1list, statements grouped into
basic blocks

e A basic block 1s a sequence of assembly 1nstructions that has one entry and one
exit point.

e First statement of basic block 1s LABEL.

e [ast statement of basic block 1s JUMP, CJUMP.

e No LABEL, JUMP, CJUMP statements in between.

3. Tree.stm list 1list becomes Tree.stm list

e Basic blocks reordered so every CTJUMP immediately followed by false label.

e Basic blocks flattened into individual statements.



