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Types 
 

What is a type? 
 
Type Checking: 
•  Helps find language-level errors: 

•  Memory Safety – can’t dereference something not a pointer 
•  Control-Flow Safety – can’t jump to something not code 
•  Type Safety – redundant specification checked 

•  Helps find application-level errors: 
•  Ensures isolation properties 

•  Helps generate code: 
•  Is that “+” a floating point add or an integer add? 
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Defining a Type System 
 

•  RE à Lexing 
•  CFG à Parsers 
•  Inductive Definitions à Type Systems 
 
An inductive definition really has two parts: 
1. Specification of the form of judgments – A judgment is 

an assertion/claim, may or may not be true. A valid 
judgment is a true/provable judgment. 

2. A collection of inference rules – what allow you to 
conclude whether a judgment is true or false  
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Inference Rules 
 

An implementation-language-independent way: type 
system with inference rules.  

Read: if a has type bool and b has type bool, then a && b 
has type bool.  

5 

Inference Rules 
 

An inference rule has a set of premises J1, . . . , Jn and 
one conclusion J, separated by a horizontal line: 
 

 
Read:  
•  If I can establish the truth of the premises  J1,...,Jn, I 

can conclude: J is true.  
•  To check J, check J1,...,Jn.  

An inference rule with no premises is called an Axiom – J 
always true 

Judgments 
 
The premises and conclusions are called judgments.  
 
The most common judgments in type systems have the 
form: 
 
 
 
 
Read: expression e has type T.  
Means: Based on no outside evidence, e is an expression 
with type T  
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Axioms and Rules 
 
Examples: BT, BF, B&&, B|| 
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Type Checking and Type Inference  
 
Two activities:  
 
•  Type checking: Given an expression e and a type T, 

decide if e : T 

•  Type inference: Given an expression e, find a type T 
such that e : T  

 
 
Both activities necessary.  Both originate from typing rules.  
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Type Checking Implementation 
 
Example: type checking for &&: 
 
check(a && b, bool):  

 check(a, bool)  
 check(b, bool)  

No patterns matching types other than bool. 
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Type Inference Implementation 
 
Example: type checking for &&: 
 
infer(a && b):  

 check(a, bool)  
 check(b, bool) 
 return bool 

Inference involves checking. 
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Recall Symbol Table, Scope Topic 
 
•  Generally, a variable can be any type available in the 

language. 
•  In C and Java, type determined by the declaration of 

the variable.  
•  In inference rules, variables are collected to a context.  
•  Context is a symbol table of (variable, type) pairs.  
•  In inference rules, the context is denoted by the Greek 

letter Γ, Gamma.  
•  The judgment form for typing is generalized to:  

•  Read: expression e has type T in context Γ 
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Context 
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Consider: 
 
 
This means: 

 x + y > y is bool in context where x and y are ints 
 
Context notation: 
 
 
Adding variable to existing context: 



Context 
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Most judgments share the same Γ, because the context 
doesn’t change.  
 
 
 
For declarations: 
 
 
 
The condition “if x : T in Γ” is not a judgment – but a 
sentence in the metalanguage (English).   (Condition is a 
symbol table lookup of x in Γ.) 
 
 
Functions 
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Function Application: 
 
 
 
Notation: 
 
 
 
 
 

Proofs 
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Proof Tree: a trace of the steps that the type checker 
performs, built up rule by rule.  
 
 
 
Each judgment is a conclusion from the ones above with 
some of the rules, indicated beside the line. This tree uses 
the variable rule and the rules for + and >:  
 
 
 
 
 
 



Overloading 
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The binary arithmetic operations (+ - * /) and comparisons 
(== != < > <= >=) are overloaded in many languages. 
 
If the possible types are int, double, and string, the typing 
rules become:  
 
 
 
 
 

Overloading Implementation 
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First infer the type of the first operand, then check the 
second operand with respect to this type:  
 
infer (a + b) : 

 t := infer(a) 
 // check that t ∈ {int, double, string}  
 check (b, t) 
 return t  

 
 
 
 

Type Conversion 
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Example: an integer can be converted into a double 
 
Generally, integers and doubles have different binary 
representations operated upon by different instructions.  
 
Compiler generates a conversion instruction (or 
instructions) for type conversions.  
 
 



Type Conversion 
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2 + “hello” produces “2hello” 

Evaluate: 1 + 2 + "hello" + 1 + 2  

Statement Validity 
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When type-checking a statement, simply check whether 
the statement is valid.  
 
A new judgment form:  
 
 
Read: Statement s is valid in environment Γ.  
Example: while
 
 
 

Expression Statements 
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Some expressions simply need a type inference.  
For example: assignments and function calls.  
 
 
 
 
 
Parameters of the function define the context.  
The body statements s1 . . . sn are checked in this context.  
Context may change within the body from declarations.  
Check all variables in the parameter list are distinct.  
 
 
 
 



Return Statements 
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Return statement should be of expected type.  
 
Control flow makes this interesting: 
 
 
 
 

Declarations and Block Structure 
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Each declaration has a scope, in a certain block.  
 
Blocks in C and Java correspond (roughly) to parts of code 
between curly brackets: {   } 
 
Two principles regulate the use of variables:  
1. A variable declared in a block has its scope till the end of 
that block.  
2. A variable can be declared again in an inner block, but 
not otherwise.  
 
 
 

Declarations and Block Structure 
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Stack of Contexts 
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Context to deal with blocks:  Instead of a simple lookup 
table, Γ must be a stack of lookup tables. 

Notation:  
 
 
 
where Γ1 is an old (i.e. outer) context and Γ2 an inner 
context.  
 
The innermost context is the top of the stack.  
Recall Symbol Table Discussion… 

Declarations 
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A declaration introduces a new variable in the current 
scope, checked to be fresh with respect to the context.  
 
Rules for sequences of statements, not just individual 
statements:  
 
 
A declaration extends the context used for checking the 
statements that follow:  
 

Example: If Statement Derivation/Proof 
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Example: sizeof 
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Example: Function  
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