
1

Topic 6: Types

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

Adapted from slides by Aarne Ranta

2

Types

What is a type?

Type Checking:
•  Helps find language-level errors:

•  Memory Safety – can’t dereference something not a pointer
•  Control-Flow Safety – can’t jump to something not code
•  Type Safety – redundant specification checked

•  Helps find application-level errors:
•  Ensures isolation properties

•  Helps generate code:
•  Is that “+” a floating point add or an integer add?

3

Defining a Type System

•  RE à Lexing
•  CFG à Parsers
•  Inductive Definitions à Type Systems

An inductive definition really has two parts:
1. Specification of the form of judgments – A judgment is

an assertion/claim, may or may not be true. A valid
judgment is a true/provable judgment.

2. A collection of inference rules – what allow you to
conclude whether a judgment is true or false

4

Inference Rules

An implementation-language-independent way: type
system with inference rules.

Read: if a has type bool and b has type bool, then a && b
has type bool.

5

Inference Rules

An inference rule has a set of premises J1, . . . , Jn and
one conclusion J, separated by a horizontal line:

Read:
•  If I can establish the truth of the premises J1,...,Jn, I

can conclude: J is true.
•  To check J, check J1,...,Jn.

An inference rule with no premises is called an Axiom – J
always true

Judgments

The premises and conclusions are called judgments.

The most common judgments in type systems have the
form:

Read: expression e has type T.
Means: Based on no outside evidence, e is an expression
with type T

6

Axioms and Rules

Examples: BT, BF, B&&, B||

7

Type Checking and Type Inference

Two activities:

•  Type checking: Given an expression e and a type T,

decide if e : T

•  Type inference: Given an expression e, find a type T
such that e : T

Both activities necessary. Both originate from typing rules.

8

Type Checking Implementation

Example: type checking for &&:

check(a && b, bool):

 check(a, bool)
 check(b, bool)

No patterns matching types other than bool.

9

Type Inference Implementation

Example: type checking for &&:

infer(a && b):

 check(a, bool)
 check(b, bool)
 return bool

Inference involves checking.

10

Recall Symbol Table, Scope Topic

•  Generally, a variable can be any type available in the

language.
•  In C and Java, type determined by the declaration of

the variable.
•  In inference rules, variables are collected to a context.
•  Context is a symbol table of (variable, type) pairs.
•  In inference rules, the context is denoted by the Greek

letter Γ, Gamma.
•  The judgment form for typing is generalized to:

•  Read: expression e has type T in context Γ

11

Context

12

Consider:

This means:

 x + y > y is bool in context where x and y are ints

Context notation:

Adding variable to existing context:

Context

13

Most judgments share the same Γ, because the context
doesn’t change.

For declarations:

The condition “if x : T in Γ” is not a judgment – but a
sentence in the metalanguage (English). (Condition is a
symbol table lookup of x in Γ.)

Functions

14

Function Application:

Notation:

Proofs

15

Proof Tree: a trace of the steps that the type checker
performs, built up rule by rule.

Each judgment is a conclusion from the ones above with
some of the rules, indicated beside the line. This tree uses
the variable rule and the rules for + and >:

Overloading

16

The binary arithmetic operations (+ - * /) and comparisons
(== != < > <= >=) are overloaded in many languages.

If the possible types are int, double, and string, the typing
rules become:

Overloading Implementation

17

First infer the type of the first operand, then check the
second operand with respect to this type:

infer (a + b) :

 t := infer(a)
 // check that t ∈ {int, double, string}
 check (b, t)
 return t

Type Conversion

18

Example: an integer can be converted into a double

Generally, integers and doubles have different binary
representations operated upon by different instructions.

Compiler generates a conversion instruction (or
instructions) for type conversions.

Type Conversion

19

2 + “hello” produces “2hello”

Evaluate: 1 + 2 + "hello" + 1 + 2

Statement Validity

20

When type-checking a statement, simply check whether
the statement is valid.

A new judgment form:

Read: Statement s is valid in environment Γ.
Example: while

Expression Statements

21

Some expressions simply need a type inference.
For example: assignments and function calls.

Parameters of the function define the context.
The body statements s1 . . . sn are checked in this context.
Context may change within the body from declarations.
Check all variables in the parameter list are distinct.

Return Statements

22

Return statement should be of expected type.

Control flow makes this interesting:

Declarations and Block Structure

23

Each declaration has a scope, in a certain block.

Blocks in C and Java correspond (roughly) to parts of code
between curly brackets: { }

Two principles regulate the use of variables:
1. A variable declared in a block has its scope till the end of
that block.
2. A variable can be declared again in an inner block, but
not otherwise.

Declarations and Block Structure

24

Stack of Contexts

25

Context to deal with blocks: Instead of a simple lookup
table, Γ must be a stack of lookup tables.

Notation:

where Γ1 is an old (i.e. outer) context and Γ2 an inner
context.

The innermost context is the top of the stack.
Recall Symbol Table Discussion…

Declarations

26

A declaration introduces a new variable in the current
scope, checked to be fresh with respect to the context.

Rules for sequences of statements, not just individual
statements:

A declaration extends the context used for checking the
statements that follow:

Example: If Statement Derivation/Proof

27

Example: sizeof

28

Example: Function

29

