Topic 4: Abstract Syntax Semantic Analysis

COS 320

Compiling Techniques

Princeton University Spring 2015

Prof. David August

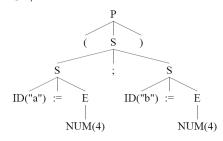
Parse Trees

- We have been looking at concrete parse trees.
 - Each internal node labeled with non-terminal.
 - Children labeled with symbols in RHS of production.
- Concrete parse trees inconvenient to use! Tree is cluttered with tokens containing no additional information.
 - Punctuation needed to specify structure when writing code, but
 - Tree structure itself cleanly describes program structure.

Abstract Syntax

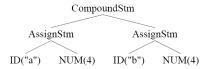
Can write entire compiler in ML-YACC specification.

- Semantic actions would perform type checking and translation to assembly.
- Disadvantages:
 - 1. File becomes too large, difficult to manage.
 - 2. Program must be processed in order in which it is parsed. Impossible to do global/inter-procedural optimization.


Alternative: Separate parsing from remaining compiler phases.

Parse Tree Example

$$\begin{array}{llll} P \rightarrow (S) & E \rightarrow \mathrm{ID} & E \rightarrow E - E \\ S \rightarrow S \; ; \; S & E \rightarrow \mathrm{NUM} & E \rightarrow E * E \\ S \rightarrow \mathrm{ID} \coloneqq E & E \rightarrow E + E & E \rightarrow E / E \end{array}$$


$$(a := 4 ; b := 5)$$

Type checker does not need "(" or ")" or ";"

Parse Tree Example

Solution: generate *abstract parse tree* (abstract syntax tree) - similar to concrete parse tree, except redundant punctuation tokens left out.

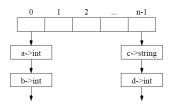
Symbol Table Example

```
\sigma_0 = \{a \mapsto int\}
function f(b:int,
                        c:int) =
                                                     \sigma_1 = \{b \mapsto int, c \mapsto int, a \mapsto int\}
     (print int(b+c);
      let
           var j := b
                                                     \sigma_2 = \{j \mapsto int, b \mapsto int, c \mapsto int, a \mapsto int\}
           var a := "x"
                                                     \sigma_3 = \{a \mapsto string, j \mapsto int, b \mapsto int, c \mapsto int, a \mapsto int\}
      in
           print(a)
          print(j)
      end
                                                     \sigma_1 = \{b \mapsto int, c \mapsto int, a \mapsto int\}
      print int(a)
                                                     \sigma_0 = \{a \mapsto int\}
```

Semantic Analysis: Symbol Tables

- Semantic Analysis Phase:
 - Type check AST to make sure each expression has correct type
 - Translate AST into IR trees
- Main data structure used by semantic analysis: symbol table
 - Contains entries mapping identifiers to their bindings (e.g. type)
 - As new type, variable, function declarations encountered, symbol table augmented with entries mapping identifiers to bindings.
 - When identifier subsequently used, symbol table consulted to find info about identifier
 - When identifier goes out of scope, entries are removed.

Symbol Table Implementation


- Imperative Style: (side effects)
 - Global symbol table
 - When beginning-of-scope entered, entries added to table using side-effects. (old table destroyed)
 - When end-of-scope reached, auxiliary info used to remove previous additions.
 (old table reconstructed)
- Functional Style: (no side effects)
 - When beginning-of-scope entered, new environment created by adding to old one, but old table remains intact.
 - When end-of-scope reached, retrieve old table.

Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.

• Hash Tables - an array of buckets

• Bucket - linked list of entries (each entry maps identifier to binding)

• Suppose we with to lookup entry for id i in symbol table:

1. Apply hash function to key i to get array element $j \in [0, n-1]$.

2. Traverse bucket in table [j] in order to find binding b. (table [x]: all entries whose keys hash to x)

Functional Symbol Tables

Better method: use binary search trees (BSTs).

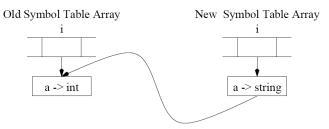
• Functional additions easy.

11

• Need "less than" ordering to build tree.

- Each node contains mapping from identifier (key) to binding.

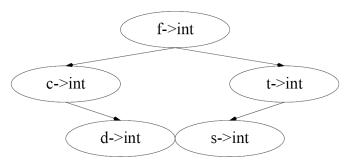
- Use string comparison for "less than" ordering.


- For all nodes $n \in L$, key(n) < key(l)For all nodes $n \in R$, key(n) >= key(l)

Functional Symbol Tables

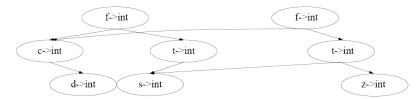
Hash tables not efficient for functional symbol tables.

Insert a \mapsto string \Rightarrow copy array, share buckets:



Not feasible to copy array each time entry added to table.

Functional Symbol Table Example


Lookup:

Functional Symbol Table Example

Insert:

insert $z \mapsto \text{int}$, create node z, copy all ancestors of z:

