Topic 3: Parsing and Yaccing

COS 320

Compiling Techniques

Princeton University
Spring 2015

Prof. David August

Syntactical Analysis

Front End:

- Lexical Analysis Break source into tokens.
- Syntax Analysis Parse phrase structure.
- Semantic Analysis Calculate meaning.

Our Compiler:

Parser Functions:

- Verify that token stream is valid.
- If it is not valid, report syntax error and recover.
- Build Abstract Syntax Tree (AST).

Syntactical Analysis

- Every programming language has a set of rules that describe syntax of well-formed programs in language.
- Syntax Analysis (Parsing) Determine if source program satisfies these rules.
- Source program constructs may have recursive structure:

```
digits = [0-9]+
expr = {digits} | "(" {expr} "+" {expr} ")"
```

• Finite Automata cannot recognize recursive constructs. (A machine with N states cannot remember a parenthesis-nesting depth greater than N.)

We need a more powerful formalism: Context-Free Grammar

Context-Free Grammar

Regular Expressions - describe lexical structure of tokens.

Context-Free Grammars - describe syntactic nature of programs.

Definitions

- Language set of strings
- String finite sequence of symbols taken from finite alphabet
 - Regular Expressions describe a language.
 - Context-Free Grammar also describes a language.

	Lexical Analysis	Syntax Analysis
	set of tokens	set of source programs
string	token	source program
symbol	ASCII character	token

Context-Free Grammar

- Also known as BNF (Backus-Naur Form).
- Context-free grammars are more powerful than regular expressions.
 - Any language that can be generated using regular expressions can be generated by a context-free grammar.
 - There are languages that can be generated by a context-free grammar that cannot be generated by any regular expression.
- Examples:
 - Matching parentheses
 - Nested comments

Context-Free Grammars

• Context-Free Grammars consist of a set of *productions*.

$$symbol \rightarrow symbol \dots symbol$$

- Symbol types:
 - terminal that corresponds to a token-type.
 - non-terminal that denotes a set of strings.
- Left-Hand Side (LHS) non-terminal.
- Right-Hand Side (RHS) terminals or non-terminals
- Start Symbol A special non-terminal.
- Each production specifies how terminals and non-terminals may be combined to form a substring in language.
- Easy to specify recursion:

 $stmt \rightarrow IF \ exp \ THEN \ stmt \ ELSE \ stmt$

Start Symbol

- String of token-types is in language described by grammar if it can be derived from *start symbol*
- Derivations:
 - 1. begin with start symbol
 - 2. while non-terminals exist, replace any non-terminal with RHS of production
- Multiple derivations exist for given sentence
 - Left-most derivation replace left-most non-terminal in each step.
 - Right-most derivation replace right-most non-terminal in each step.

Non-Terminals: stmt : Statement $stmt \rightarrow stmt; stmt$ expr : Expression $stmt \rightarrow ID := expr$ expr list : Expression List $stmt \rightarrow PRINT (expr_list)$ Terminals (tokens): $expr \rightarrow ID$ SEMI ";" $expr \rightarrow NUM$ ID $expr \rightarrow expr + expr$ ASSIGN ":=" $expr \rightarrow (stmt, expr)$ LPAREN "(" RPAREN ")" $expr_list \rightarrow expr$ MUM $expr_list \rightarrow expr_list, expr$ PLUS "+" PRINT "print" COMMA ","

Example: Leftmost Derivation

Show that expression can be derived from start symbol.

```
ID := NUM; PRINT(NUM)
a := 12; print(23)
```

Example: Rightmost Derivation

Show that expression can be derived from start symbol.

```
ID := NUM; PRINT(NUM)
a := 12; print(23)
```

Parse Trees

- Parse Trees Graphical representation of derivation.
- Each internal node is labeled with a non-terminal.
- Each leaf node is labeled with a terminal.
- Parse Tree of the example using right-most derivation production:

Ambiguous Grammars

A grammar is ambiguous if it can derive a string of tokens with two or more different parse trees.

NUM(4)

NUM(6)

E

NUM(6)

Ε

NUM(5)

```
Consider: 4 + 5 * 6
Non-Terminals:
                                       NUM(4) PLUS NUM(5) MULT NUM(6)
   expr : Expression
Terminals (tokens):
   ID
                                              NUM(4)
  MUM
   PLUS
            " + "
                                                         NUM(5)
  MULT
            II * II
expr \rightarrow ID
expr \ \rightarrow \ NUM
expr \rightarrow expr + expr
                                                                 Ε
expr \rightarrow expr * expr
```

Ambiguous Grammars

- *Problem*: compilers use parse trees to interpret meaning of parsed expressions.
 - Different parse trees may have different meanings, resulting in different interpreted results.
 - For example, does 4 + 5 * 6 equal 34 or 54?
- Solution: rewrite grammar to eliminate ambiguity.
 - If language doesn't have unambiguous grammar, then you have a bad programming language.
 - Operators have a relative *precedence*. We say some operands *bind tighter* than others. ("*" binds tighter than "+")
 - Operators with the same precedence must be resolved by *associativity*. Some operators have *left associativity*, others have *right associativity*.

Ambiguous Grammars

Non-Terminals:

expr : Expression

term : Term (add)

fact : Factor (mult)

Terminals (tokens):

 $expr \rightarrow expr + term$

 $expr \rightarrow term$

 $term \rightarrow term * fact$

 $term \rightarrow fact$

 $fact \rightarrow ID$

 $fact \rightarrow NUM$

End-Of-File Marker

- Parse must also recognize the End-of-File (EOF).
- EOF marker in the grammar is "\$"
- Introduce new start symbol and the production $E' \to E$ \$

Grammars and Lexical Analysis

• Grammars can also describe token structure:

(a | b)* abb
$$W \to aW \\ W \to bW \\ W \to aX \\ X \to bY \\ Y \to bZ \\ Z \to \epsilon$$

- Can combine lexical analysis and syntax analysis into one module.
- Disadvantages:
 - Regular expression specification is more concise.
 - Separating phases increases compiler modularity.

Context-Free Grammars and REs

- Context-free grammars are more powerful than regular expressions.
 - Any language that can be generated using regular expressions can be generated by a context-free grammar.
 - There are languages that can be generated by a context-free grammar that cannot be generated by any regular expression.
- As a corollary, CFGs are strictly more powerful than DFAs and NFAs.
- The proof is in two parts:
 - Given a regular expression R, we can generate a CFG G such that L(R) = L(G).
 - We can define a grammar G for which there is no FA F such that L(F) == L(G).

Context Free Grammars and REs

Base Cases:

• Symbol (*a*):

$$RE \rightarrow a$$

• Epsilon (ϵ):

$$RE \rightarrow \epsilon$$

Inductive Cases:

• Alternation (M|N):

$$RE \rightarrow M$$

$$RE \rightarrow N$$

• Concatenation (M N):

$$RE \rightarrow MN$$

• Kleen closure (M*):

$$RE \rightarrow MRE$$

$$RE \rightarrow \epsilon$$

Context-Free Grammar with no RE/FA

$$S \to (S)$$
$$S \to \epsilon$$

- FAs have a FINITE number of states, N
- FA must "remember" number of "("s, to generate ")"s
- At or before N + 1 "("s FA will revisit a state.
- That state represents two different counts of ")"s.
- Both counts must now be accepted.
- One count will be invalid.

Representations

- Regular, right-linear, finite-state grammars: FAs
- Context-free grammars: Push-Down Automata

Further Exploration

We have been talking about Context-Free Grammars.

What is a **context-sensitive grammar?**

Parsing

Front End:

- Lexical Analysis Break source into tokens.
- Syntax Analysis Parse phrase structure.
- Semantic Analysis Calculate meaning.

Our Compiler:

Parser Functions:

- Verify that token stream is valid.
- If it is not valid, report syntax error and recover.
- Build Abstract Syntax Tree (AST).

Outline

- Recursive Descent Parsing
- Shift-Reduce Parsing
- ML-Yacc
- Recursive Descent Parser Generation

Recursive Descent Parsing

- Recall discussion on Context-Free Grammars: symbols (terminal, non-terminal), productions, derivations, etc.
- Can parse many grammars using algorithm called *recursive descent* parsing.
 - A.K.A.: *predictive parsing*
 - A.K.A.: *top-down parsing*
 - A.K.A.: *LL(1)* Left-to-right parse, Leftmost-derivation, 1-symbol lookahead.
- One recursive function for each non-terminal.
- Each production becomes clause in function.

Grammar:

```
non-terminals: S, L, E
terminals: IF (if), THEN (then), ELSE (else), BEGIN (begin),
     PRINT (print), END (end), SEMI (:), NUM, EQ (=)
S \rightarrow if E then S else S
S \rightarrow begin S L
                    datatype token = EOF | IF | THEN | ELSE | BEGIN |
S \rightarrow print E
                                        PRINT | END | SEMI | NUM |
                                                                       ΕO
L \rightarrow end
L \rightarrow : S L
                    val tok = ref (getToken())
E \rightarrow num = num
                    fun advance() = tok := getToken()
                     fun eat(t) = if (!tok = t) then advance() else error()
                     fun S() = case !tok of
                                      => (eat(IF); E(); eat(THEN); S();
                                             eat(ELSE); S())
                                  BEGIN => (eat(BEGIN); S(); L())
                                  PRINT => (eat(PRINT); E())
                    and L() = case !tok of
                                  END => (eat(END))
                                  SEMI => (eat(SEMI); S(); L())
                     and E() =
                                            (eat(NUM); eat(EQ); eat(NUM))
```

Another Example

Grammar:

```
E \rightarrow id
   A \rightarrow S EOF
                               E \rightarrow num
   S \rightarrow id := E
                               L \rightarrow E
   S \rightarrow print (L)
                               L \rightarrow L, E
fun A() = (S(); eat(EOF))
and S() = case !tok of
                      => (eat(ID); eat(ASSIGN); E())
              ID
              PRINT => (eat(PRINT); eat(LPAREN);
                           L(); eat(RPAREN))
and E() = case !tok of
                   => (eat(ID))
              ID
              NUM => (eat(NUM))
and L() = case !tok of
              ID => (?????)
              NUM => (?????)
```

The Problem

• If !tok = ID, parser cannot determine which production to use:

```
L \rightarrow E (E could be ID)
 L \rightarrow L, E (L could be ID)
```

- Predictive parsing only works for grammars where first terminal symbol of each subexpression provides enough information to choose which production to use.
- Can write predictive parser by eliminating *left recursion*.

```
\begin{array}{lll} L \rightarrow E & L \rightarrow E \, M \\ L \rightarrow L, E & \Longrightarrow & M \rightarrow, E \, M \\ \text{and L()} &= \text{case !tok of} \\ & \text{ID} &= > (E(); \, M()) \\ & \text{NUM} &= > (E(); \, M()) \\ \text{and M()} &= \text{case !tok of} \\ & \text{COMMA} &= > (\text{eat(COMMA)}; \, E(); \, M()) \\ & \text{RPAREN} &= > () \end{array}
```

Another Option: Shift-Reduce Parsing

- Given next input token, predictive parser must predict which production to use.
- Shift-reduce parsing delays decision until it has seen input token corresponding to entire RHS of production.
 - A.K.A.: *bottom-up parsing*
 - A.K.A.: *LR(k)* Left-to-right parse, Rightmost derivation, k-token lookahead
- Shift-reduce parsing can parse more grammars than predictive parsing.
- Parser has *stack*.
- Based on stack contents and next input token, one of two action performed:
 - 1. Shift push next input token onto top of stack.
 - 2. Reduce choose production $(X \rightarrow ABC)$; pop off RHS (C, B, A); push LHS (X).
- Stack is initially empty.
- Parser points to beginning of input stream.
- If \$ is shifted, then input stream has been parsed successfully.

Shift-Reduce Parsing

How does parser know when to shift or reduce?

- DFA: applied to stack contents, not input stream
- Each state corresponds to contents of stack at some point in time.
- Edges labelled with terms/non-terms that can appear on stack.

Grammar:

```
\begin{array}{l} \textbf{1} \ A \rightarrow S \ EOF \\ \textbf{2} \ S \rightarrow (L) \\ \textbf{3} \ S \rightarrow \textit{id} = \textit{num} \\ \textbf{4} \ L \rightarrow L; \ S \\ \textbf{5} \ L \rightarrow S \end{array}
```

Input:

```
(a=4;b=5) \rightarrow (ID_a=NUM_4;ID_b=NUM_5) input: ( ID = NUM ; ID = NUM ) 0 \\ \text{stack:} \\ \text{action: shift}
```

```
input: ( ID = NUM ; ID = NUM )
1
    stack: (
   action: shift
    input: ( ID = NUM ; ID = NUM )
    stack: (ID
   action: shift
    input: ( ID = NUM ; ID = NUM )
3
    stack: ( ID =
   action: shift
    input: ( ID = NUM ; ID = NUM )
    stack: ( ID = NUM
   action: reduce 3
```

```
input: ( ID = NUM ; ID = NUM )
5
    stack: (S
   action: reduce 5
    input: ( ID = NUM ; ID = NUM )
6
    stack: ( L
   action: shift
    input: ( ID = NUM ; ID = NUM )
    stack: ( L ;
   action: shift
    input: ( ID = NUM ; ID = NUM )
8
    stack: (L; ID
   action: shift
```

```
input: ( ID = NUM ; ID = NUM )
9
    stack: ( L ; ID =
   action: shift
    input: ( ID = NUM ; ID = NUM )
10
    stack: (L; ID = NUM)
   action: reduce 3
    input: ( ID = NUM ; ID = NUM )
11
    stack: ( L ; S
   action: reduce 4
    input: ( ID = NUM ; ID = NUM )
12
    stack: (L
   action: shift
```

```
input: ( ID = NUM ; ID = NUM )

stack: ( L )
action: reduce 2

input: ( ID = NUM ; ID = NUM )

stack: S
action: ACCEPT
```

The Dangling Else Problem

• Valid Program: if a then if b then S1 else S2

```
1 S \rightarrow if E then S else S
2 S \rightarrow if E then S
3 S \rightarrow OTHER
```

- 2 interpretations: if a then [if b then S1 else S2] if a then [if b then S1] else S2
- Want first behavoir, but parse will report *shift-reduce conflict* when S1 is on top stack.
- Eliminate Ambiguity by modifying grammar (matched/unmatched):

$$\begin{array}{l} \textbf{1} \ S \rightarrow M \\ \textbf{2} \ S \rightarrow U \\ \textbf{3} \ M \rightarrow \textit{if} \ E \textit{ then} \ M \textit{ else} \ M \\ \textbf{4} \ M \rightarrow OTHER \\ \textbf{5} \ U \rightarrow \textit{if} \ E \textit{ then} \ S \\ \textbf{6} \ U \rightarrow \textit{if} \ E \textit{ then} \ M \textit{ else} \ U \end{array}$$

ML-YACC (Yet Another Compiler-Compiler)

- Input to ml-yacc is a context-free grammar specification.
- Output from **ml-yacc** is a shift-reduce parser in ML.

Context-Free Grammar Specification

• CFG specification consists of 3 parts:

User Declarations

%%

ML-YACC Definitions

%%

Rules

- User Declarlarions: define various values that are available to *rules* section.
- ML-YACC Definitions: declare terminal and non-terminal symbols; declare precedences for terminals that help resolve shift-reduce conflicts.
- Rules: specify productions of grammar and *semantic actions* associated with productions.

ML-YACC Declarations

• Need to specify type associated with positions of tokens in input file

• Need to specify terminal and non-terminal symbols (no symbols can be in both lists)

• Optionally specify end-of-parse symbol - terminals which may follow start symbol

• Optionally specify start symbol - otherwise, LHS non-terminal of first rule is taken as start symbol

Attribute Grammar

- ML-YACC employs attribute grammar scheme
 - Each terminal or non-terminal symbol may have associated attribute/value.
 - When parser reduces using production $A \to \alpha$, semantic action associated with production is exectued in order to compute value for A based on the values of symbols in α .
 - Parser returns value associated with start symbol. (If no attribute, () is returned.)
- Can specify *types* of atttributes associtated with symbols.

```
%term ID of string | NUM of int | IF | THEN | ...
%nonterm prgm | stmt | expr of int | ...
```

Rules

```
symbol_0 : symbol_1 symbol_2 ... symbol_n (semantic\_action)
```

- Semantic action typically builds piece of AST corresponding to derived string
- Can access attribute/value of RHS symbol X using X<n>, where n specifies a particular occurrence of X on RHS.

• Type of value computed by semantic action must match type of value associated with LHS non-terminal.

응응 ID | NUM | PLUS | MINUS | MULT | DIV | %term EOF %nonterm expr %pos int %start expr %eop EOF %verbose 응응 IDexpr : MUM expr PLUS expr expr MINUS expr ()

()

()

expr MULT expr

expr DIV expr

ML-YACC and Ambiguous Grammars

- A grammar is ambiguous if it can derive a string of tokens with two or more different parse trees.
- Consider: 4 + 5 * 6, NUM (4) PLUS NUM (5) MULT NUM (6)

$$\begin{array}{l} expr \rightarrow ID \\ expr \rightarrow NUM \\ expr \rightarrow expr + expr \\ expr \rightarrow expr * expr \end{array}$$

• We perfer to bind "*" tighter than "+".

ML-YACC and Ambigous Grammars

- Similarly Consider: 4 + 5 + 6, NUM (4) PLUS NUM (5) PLUS NUM (6)
- We perfer to bind left "+" first.
- ML-YACC will report *shift-reduce* conflicts when parsing strings.
 - -4+5*6, NUM(4) PLUS NUM(5) MULT NUM(6)
 - * At some point, E + E will be on top of stack, "*" will be the current token-type in stream.
 - * Parser can reduce by rule $E \rightarrow E + E$, or shift. Prefer *shift*.
 - -4+5+6, NUM(4) PLUS NUM(5) PLUS NUM(6)
 - * At some point, E + E will be on top of stack, "+" will be the current token-type in stream.
 - * Parser can reduce by rule $E \rightarrow E + E$, or shift. Prefer *reduce*.

Directives

Three Solutions:

- 1. Let YACC complain, but demonstrate that its choice (to shift) was correct.
- 2. Rewrite grammar to eliminate ambiguity.
- 3. Keep grammar, but add *precedence directives* which enable conflicts to be resolved. Use %left, %right, %nonassoc
 - For this grammar:

```
%left PLUS MINUS
%left MULT DIV
```

- PLUS, MINUS are left associative, bind equally tightly
- MULT, DIV are left associative, bind equally tightly
- MULT, DIV bind tighter than PLUS, MINUS

Directives

- Given directives, ML-YACC assigns precedence to each terminal and rule
 - Precedence of terminal based on order in which associativity specified
 - Precedence of rule is the precedence of right-most terminal. For example, precedence(E → E + E) = precedence(PLUS).
- Given shift-reduce conflict, ML-YACC performs the following:
 - 1. Find precedence of rule to be reduced, terminal to be shifted.
 - 2. $prec(terminal) > prec(rule) \Rightarrow shift.$
 - 3. $prec(rule) > prec(terminal) \Rightarrow reduce.$
 - 4. prec(terminal) = prec(rule), then:
 - $-\operatorname{assoc}(\operatorname{terminal}) = \operatorname{left} \Rightarrow \operatorname{reduce}.$
 - $-\operatorname{assoc}(\operatorname{terminal}) = \operatorname{right} \Rightarrow \operatorname{shift}.$
 - assoc(terminal) = nonassoc \Rightarrow report as error.

Precedence Examples

```
input: 4 + 5 * 6
stack: 4 + 5
action: prec(*) > prec(+) -> shift
input: 4 * 5 + 6
stack: 4 * 5
action: prec(*) > prec(+) -> reduce
input: 4 + 5 + 6
stack: 4 + 5
action: assoc(+) = left -> reduce
```

Default Behavior

What if directives not specified?

- shift-reduce: report error, *shift* by default.
- reduce-reduce: report error, reduce by rule that occurs first.

What to do:

- shift-reduce: acceptable in well defined cases (dangling else).
- reduce-reduce: unnacceptable. Rewrite grammar.

Direct Rule Precedence Specification

Can assign *specific* precedence to rule, rather than precedence of last terminal.

- Use the %prec directive.
- Commonly used for the *unary minus* problem.

```
%left PLUS MINUS
%left MULT DIV
```

- Consider -4 * 6, MINUS NUM(4) MULT NUM(6)
- We perfer to bind left unary minus ("-") tighter. Here, precedence of MINUS is lower than MULT, so we get -(4*6), not (-4)*6.
- Solution:

Syntax vs. Semantics

Consider language with two classes of expressions

• *Arithmetic* expressions (ae)

• *Boolean* expressions (be)

```
be : be AND be ()
    | be OR be ()
    | be EQ be ()
    | ID ()
```

- Consider: a := b, ID(a) ASSIGN ID(b):
 - Reduce-reduce conflict parser can't choose between be \rightarrow ID or ae \rightarrow ID.
 - For now ae and be should be aliased let semantic analysis (next phase) determine that a & b + c is a type error.
 - Type checking cannot be done easily in context free grammars.

Recursive Descent/Predictive/LL(1) Parser Generation

Grammar:

```
E \rightarrow id
   A \rightarrow S EOF
                                E \rightarrow num
   S \rightarrow id := E
                                L \rightarrow E
   S \rightarrow print (L)
                                L \rightarrow L, E
fun A() =
                           (S(); eat(EOF))
and S() = case !tok of
              ID => (eat(ID); eat(ASSIGN); E())
              PRINT => (eat(PRINT); eat(LPAREN);
                            L(); eat(RPAREN))
and E() = case !tok of
              ID => (eat(ID))
              NUM => (eat(NUM))
and L() = case !tok of
              ID => (?????)
              NUM => (?????)
```

Problem

- Based on current function and next token-type in input stream, parser must predict which production to use.
- If !tok = ID, parser cannot determine which production to use:

```
\begin{array}{ll} L \to E & \quad \text{(E could be ID)} \\ L \to L, \, E & \quad \text{(L could be ID)} \end{array}
```

• Predictive parsing only works for grammars where first terminal symbol of each subexpression provides enough information to choose which production to use.

Formal Techniques

Can use formal techniques to determine whether or not a predictive parser can be built for a particular grammar.

- \bullet Let γ be a string of terminal and non-terminal symbols
- Need to compute 3 values:
 - 1. For each γ corresponding to RHS of production, must determine if γ can derive empty string $(\epsilon) \Rightarrow$ **nullable**.
 - 2. For each γ corresponding to RHS of production, must determine set of all terminal symbols that can begin any string derived from $\gamma \Rightarrow \mathbf{first}(\gamma)$.
 - 3. For each non-terminal X in grammar, must determine set of all terminal symbols that can immediately follow X in a derivation \Rightarrow **follow(**X**)**.

Computation of Nullable:

- $-\gamma$ is nullable if every symbol $S \in \gamma$ is nullable.
- Check if every S can derive ϵ .

Computation of First

- If T is a terminal symbol, then first $(T) = \{T\}$.
- If X is a non-terminal and $X \to Y_1Y_2Y_3...Y_n$, then

$$first(Y_1) \in first(X)$$

 $first(Y_2) \in first(X)$, if Y_1 is nullable
 $first(Y_3) \in first(X)$, if Y_1, Y_2 is nullable
:
 $first(Y_n) \in first(X)$, if $Y_1, Y_2, ... Y_{n-1}$ is
nullable

• Let $\gamma = S_1 S_2 ... S_k$. Then,

$$\operatorname{first}(S_1) = \begin{cases} \operatorname{first}(S_1) \\ \operatorname{first}(S_2), \operatorname{if} S_1 \text{ is nullable} \\ \operatorname{first}(S_3), \operatorname{if} S_1, S_2 \text{ is nullable} \\ \vdots \\ \operatorname{first}(S_k), \operatorname{if} S_1, S_2, ..., S_{k-1} \text{ is nullable} \end{cases}$$

Computation of Follow

Let X, Y be non-terminals; γ , γ_1 , and γ_2 be strings of terminals and non-terminals

- if grammar includes production: $X \to \gamma Y$ \Rightarrow follow(X) \in follow (Y).
- if grammar includes production: $X \to \gamma_1 Y \gamma_2$
 - \Rightarrow first $(\gamma_2) \in$ follow (Y)
 - \Rightarrow follow $(X) \in$ follow (Y), if γ_2 is nullable.

Perform *iterative* technique in order to compute nullable, first, and follow sets for each non-terminal in grammar.

Building a Predictive Parser

$$Z \to XYZ$$
$$Z \to d$$

$$\begin{array}{c} Y \to \mathbf{c} \\ Y \to \epsilon \end{array}$$

$$X \to a$$

 $X \to b Y e$

Initial: nullable first follow

Hullaule	шы	IOHOW
no		
no		
no		
	no no	

Examine each production in grammar, modifying nullable and adding to first and follow sets, until no more changes can be made.

Iteration 1:

	nullable	first	follow
Z	no no		
Y	no		
X	no		

Building a Predictive Parser

$$\begin{array}{c} Z \to XYZ \\ Z \to \ \mathbf{d} \end{array}$$

$$Y \to \mathbf{c}$$

 $Y \to \epsilon$

$$X \to a$$

 $X \to b Y e$

Iteration 1:

		1161a		
		nullable	пrst	Iollow
•	Z	no		
	Y	yes		
	X	no		

Iteration 2:

	nullable	first	follow
Z	no		
Y	yes		
X	no		

Iteration 3:

	nullable	first	follow
Z	no	d,a,b	
Y	yes	c	e,d,a,b
X	no yes no	a,b	c,d,a,b

No Changes

Predictive Parsing Table

	nullable	first	follow
Z	no	d,a,b	
Y	no yes no	c	e,d,a,b
X	no	a,b	c,d,a,b

Build predictive parsing table from nullable, first, and follow sets.

- Enter $S \to \gamma$ in row S, column T: for each $T \in \text{first}(\gamma)$.
- If γ is nullable, enter $S \to \gamma$ in row S, column T: for each $T \in \text{follow}(S)$.
- Entry in row S, column T tells parser which clause to execute if current function is S() and next token-type is T
- Blank entries are syntax errors.

Predictive Parsing Table

If the predictive parsing table contains *no* duplicate entries, can build predictive parser for grammar.

- Grammar is LL(1) (left-to-right parse, left-most derivation, 1 symbol lookahead).
- Grammar is LL(k) if its LL(k) predictive parsing table has no duplicate entries.
 - Rows correspond to non-terminals, columns correspond to every possible sequence of k terminals.
 - The first(γ) = set of all k-length terminal sequences that can begin any string derived from γ .
 - LL(k) paring tables can be too large.
 - Ambiguous grammars are not LL(k), \forall k.

$$S' \to S$$
\$

$$S \to \text{ IF } E \text{ THEN } A \text{ ELSE } A \qquad T \to \text{ NUM}$$

$$T \rightarrow \text{NUM}$$

$$S \to E$$

$$S \to E$$
 $E \to E + T$

$$A \rightarrow ID = NUM$$

 $S \to \text{ IF } E \text{ THEN } A \qquad E \to T$

Iteration 1:

	nullable	first	follow
S'	no		
S	no	IF	\$
E	no		\$, THEN, +
T	no	NUM	\$, THEN, +
A	no no no no	ID	\$, ELSE

Iteration 2:

	nullable	first	follow
S'	no	IF	
S	no	IF	\$
E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no no no no	ID	\$, ELSE

$$S' \to S \$ \qquad S \to \text{IF } E \text{ THEN } A \text{ ELSE } A \qquad T \to \text{ NUM}$$

$$S \to E \qquad E \to E + T \qquad A \to \text{ID} = \text{NUM}$$

$$S \to \text{IF } E \text{ THEN } A \qquad E \to T$$

Ite:	ration 3:			Itei	ration 4:		
	nullable	first	follow		nullable	first	follow
S'	no	IF		S'	no	IF, NUM	
S	no	IF, NUM	\$	S	no	IF, NUM	\$
E	no	NUM	\$, THEN, +	E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +	T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE	A	no	ID	\$, ELSE

No futher changes

Predictive Parsing Table

	nullable	first	follow
S'	no	IF, NUM	
S	no	IF, NUM	\$
E	no no no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

Build predictive parsing table from nullable, first, and follow sets.

	IF	THEN	ELSE	+	NUM	ID	=	\$
S'	$S' \to S$				$S' \to S$			
S	$S \to \text{IF } E \text{ THEN } A$ $S \to \text{IF } E \text{ THEN } A \text{ ELSE } A$				$S \to E$			
E					$E \to E + T$ $E \to T$			
T					$T \rightarrow NUM$			
A						$A \rightarrow ID = NUM$		

Table has duplicate entries \Rightarrow grammar is not LL(1)!

Problems

1.
$$E \to E + T$$

 $E \to T$

- first(E+T) = first(T)
- When in function E (), if next token is NUM, parser will get stuck.
- Grammar is *left-recursive* left-recursive grammars cannot be LL(1).
- Solution: rewrite grammar so that it is *right-recursive*.

$$E \to TE'$$

$$E' \to \epsilon$$

$$E' \to +TE'$$

• In general, $X \to X\gamma \over X \to \alpha$ derives strings of form $\alpha \gamma^*$ (α doesn't start with X). These two productions can be rewritten as follows:

$$X \to \alpha X'$$

$$X' \to \epsilon$$

$$X' \to \gamma X'$$

Problems

2.
$$S \rightarrow \text{IF } E \text{ THEN } A$$

 $S \rightarrow \text{IF } E \text{ THEN } A \text{ ELSE } A$

- Two productions begin with same symbol.
- first(IF E THEN A) = first(IF E THEN A ELSE A)
- Solution: use left-factoring $S \to IF E$ THEN A V $V \to \epsilon$ $V \to ELSE A$

Show that modified grammar is LL(1).

$$S' \rightarrow S \$ \qquad V \rightarrow \text{ELSE } A$$

$$S \rightarrow E \qquad E \rightarrow TE'$$

$$S \rightarrow \text{IF } E \text{ THEN } A V \quad E' \rightarrow \epsilon$$

$$V \rightarrow \epsilon \qquad E' \rightarrow + TE$$

$$T \rightarrow \text{NUM}$$

 $A \rightarrow \text{ID} = \text{NUM}$

Show that the grammar is LL(1).

Show that modified grammar is LL(1). Build predictive parsing table.

	nullable	first	follow
S'	no	IF,NUM	
S	no	IF,NUM	\$
V	yes	ELSE	\$
E	no	NUM	\$, THEN
E'	yes	+	\$, THEN
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

	IF	THEN	ELSE	+	NUM	ID	=	\$
S'	$S' \to S$				$S' \to S$			
S	$S \to \text{IF } E \text{ THEN } A V$				$S \to E$			
V			$V \to \ \operatorname{ELSE} A$					$V \to \epsilon$
E					$E \rightarrow TE'$			
E'		$E' \to \epsilon$		$E' \rightarrow + TE'$				$E' \to \epsilon$
T					$T \rightarrow NUM$			
A						$A \rightarrow \text{ID} = \text{NUM}$		

Table does not have duplicate entries \Rightarrow modified grammar is LL(1)!

Outline

- \bullet LR(0)
- \bullet SLR
- \bullet LR(1)
- \bullet LALR(1)

Shift-Reduce, Bottom Up, LR(1) Parsing

- Shift-reduce parsing can parse more grammars than predictive parsing.
- Shift-reduce parsing has stack and input.
- Based on stack contents and next input token, one of two action performed:
 - 1. Shift push next input token onto top of stack.
 - 2. Reduce choose production $(X \rightarrow ABC)$; pop off RHS (C, B, A); push LHS (X).
- If \$ is shifted, then input stream has been parsed successfully.

LR(k)

Can generalize to case where parser makes decision based on stack contents and next k tokens. LR(k):

- Left-to-right parse
- right-most derivation
- k-symbol lookahead

LR(k) parsing, k > 1, rarely used in compilation:

- \bullet DFA too large: need transition for every sequence of k terminals.
- Most programming languages can be described by LR(1) grammars.

Shift Reduce Parsing DFA

Parser uses DFA to make shift/reduce decisions:

- Each state corresponds to contents of stack at some point in time.
- Edges labeled with terminals/non-terminals.

Rather than scanning entire stack to determine current DFA state, parser can remember state reached for each stack element.

• Transition table for LR(1) or LR(0) DFA:

	Terminals (T_1, T_2, \ldots, T_n)	Non-Terminals (N_1, N_2, \dots, N_n)
1	actions	actions
2	$\operatorname{sn} \to \operatorname{shift} \operatorname{n}$	$gz \rightarrow goto z$
3	$\text{rk} \rightarrow \text{reduce k}$	
:	$a \rightarrow accept$	
n	\rightarrow error	

Parsing Algorithm

Look up DFA state on top of stack, next terminal in input:

- shift(n):
 - Advance input by one.
 - Push input token on stack with n (the new state).
- reduce(*k*):
 - Pop stack as many times as number of symbols on RHS of rule k.
 - Let X be LHS of rule k
 - In state now on top of stack, look up X to get goto(z)
 - Push X on stack with z (the new state).
- accept → stop, report success.
- \bullet error \rightarrow stop, report syntax error.

To understand LR(k) parsing, first focus on LR(0) parser construction using an example.

LR(0) Parsing

$$1 S' \to S \$$$
$$2 S \to (L)$$

$$\begin{array}{ccc}
3 & S & & \mathbf{x} \\
4 & L & & S
\end{array}$$

$$5 L \rightarrow L, S$$

Initially, stack empty, input contains 'S' string followed by a '\$':

- Combination of production and '.' called LR(0) item.

- Closure adds more items to a set when dot exists to left of a non-terminal.

LR(0) States

LR(0) Parsing

$$\begin{array}{c}
1 \, S' \to S \, \$ \\
2 \, S \to (L)
\end{array}$$

$$\begin{array}{c} 3\:S \to \ \mathbf{x} \\ 4\:L \to S \end{array}$$

5
$$L \rightarrow L, S$$

LR(0) states:

DFA Table Entry Computation

To compute transition table from state diagram perform the following:

- ${}^{i}S' \to S.\$$ \Rightarrow table[i, \$] = a.
- $i \longrightarrow T$, Terminal $T \Rightarrow \text{table}[i, T] = \text{s}j$.
- $i \longrightarrow^{N} j$, Non-Terminal $N \Rightarrow \text{table}[i, N] = gj$.
- $[A \rightarrow \gamma] \Rightarrow \text{table}[i, T] = rk$, for all terminals T.

Transition Table

	()	X	,	\$ S'	S	L
1							
2							
3							
4							
5							
6							
7							
8							
9							

No duplicate entries \Rightarrow grammar is LR(0)

Using The Transition Table

$$1 S' \to S \$$$
$$2 S \to (L)$$

$$\begin{array}{c} 3 \ S \to \mathbf{x} \\ 4 \ L \to S \end{array}$$

$$5 L \to L, S$$

	()	X	,	\$	S'	S	L
1	s3		s2				g9	
2	r3	r3	r3	r3	r3			
3	s3		s2		r3		g5	g4
4		s6		s7				
5	r4	r4	s2 r4 r2	r4	r4			
6	r2	r2	r2	r2	r2			
7	s3		s2 r5				g8	
8	r5	r5	r5	r5	r5			
9					a			

```
STACK
            INPUT
                  ACTION
1 (x,x)$ shift 3
1 (3 x, x) $ shift 2
1 (3 x2 , x ) $ reduce 3
1 (3 S5 , x ) $ reduce 4
1 (3 L4 , x ) $ shift 7
1 (3 L4 ,7 x ) $ shift 2
1 (3 L4 ,7 x2
               $ reduce 4
               $ reduce 5
1 (3 L4 ,7 S8
                $ shift 6
1 (3 L4
                  reduce 2
1 (3 L4 )6
1 S9
                  accept
```

Another Example

$$\begin{array}{c} 1 \: S' \to E \: \$ \\ 2 \: E \to T + E \end{array}$$

$$3E \rightarrow T$$

$$4 T \rightarrow \mathbf{x}$$

LR(0) states:

Another Example - SLR

Transition Table:

Duplicate entries \Rightarrow grammar is NOT LR(0)

Can make grammar bottom-up parsable using more powerful parsing techniques: **SLR** (Simple LR)

- Use same LR(0) states.
- ${}^{i}\overline{A \to \gamma}$. \Rightarrow table [i,T] = reduce(k), for all terminals $T \in \text{follow}(A)$

Another Example – SLR

Transition Table:

	+	X	\$	S'	E	T
1		s3			g2	g4
2			a			
3	r4	r4	r4			
4	r4 s5/r3	r3	r3			
5		s3			g6	g4
6	r2	r2	r2			

$$1 S' \rightarrow E \$$$
 $3 E \rightarrow T$
 $2 E \rightarrow T + E$ $4 T \rightarrow \mathbf{x}$

Follow Set Computation:

	nullable	first	follow
S'	no	X	
E	no	X	\$
T	no	X	+,\$

SLR Transition Table:

	+	X	\$	S'	E	T
1		s3			g2	g4
2			a			
3 4	r4		r4			
4	s5		r3			
5		s3			g6	g4
6			r2			

No duplicate entries \Rightarrow grammar is SLR.

Yet Another Example

Sometimes grammar can't be parsed using SLR techniques.

This grammar is not SLR. Need more powerful parsing algorithm \Rightarrow LR(1)

LR(1) Parsing

- LR(1) item consists of two components: $(A \rightarrow \alpha.\beta, \mathbf{x})$
 - 1. Production
 - 2. Lookahead symbol (x)
- α is on top of stack, head of input is string derivable from β x.

LR(0) closure computation

- Initial: $A \rightarrow \alpha.X$
- Add all items $X \rightarrow .\gamma$
- Repeat closure computation

LR(1) closure computation

- Initial: $A \to \alpha . X\beta$, z
- Add all items $(X \to .\gamma, \omega)$ for each $\omega \in \operatorname{first}(\beta z)$
- Repeat closure computation
- shift, goto, accept table entries computed same way as LR(0)/SLR.
- reduce entries computed differently:

$$i A \rightarrow \gamma$$
., z \Rightarrow table[i,z] = reduce(k)

Yet Another Example – LR(1)

$$1 S' \to S \$$$
$$2 S \to V = E$$

$$\begin{array}{c} 3 \: S \to E \\ 4 \: E \to V \end{array}$$

$$5 V \rightarrow \mathbf{x}$$

$$6 V \rightarrow *E$$

LR(1) states:

Yet Another Example – LR(1)

	=	X	*	\$	S'	S	L	V
1		s11	s12			g2	g10	g3
2				a				
3	s4			r4				
4		s7	s8				g5	g6
2 3 4 5 6 7				r2				
6				r4				
7				r5				
8 9		s7	s8				g 9	g6
9				r6				
10				r3				
11	r5			r5				
12		s11	s12				g13	g14
13	r6			r6				
14	r4			r4				
	l .				l			

No duplicate entries \Rightarrow grammar is LR(1)

LALR(1)

- Problem with LR(1) parsers: tables too large!
 - Can make smaller table by merging states whose items are identical except for look-ahead sets \Rightarrow LALR(1) (Look-Ahead LR(1)).
 - LALR(1) transition table may contain shift-reduce/reduce-reduce conflicts where LR(1) table has none.

LALR(1)

Can make smaller table by merging states whose items are identical except for lookahead sets \Rightarrow LALR(1) (Look-Ahead LR(1)).

	=	X	*	\$	S'	S	L	V
1		s11	s12			g2	g10	g3
2				a				
3	s4			r4				
2 3 4 5		s7	s8				g5	g6
5				r2				
6/14	r4			r4				
7/11	r5			r5				
8/12		s7/11	s8/12				g9/13	g6/14
9/13	r6			r6				
10				r3				

No conflicts \Rightarrow grammar is LALR(1).

Parsing Power

ML-YACC uses LALR(1) parsing because reasonable programming languages can be specified by an LALR(1) grammar. (Figure from MCI in ML.)

Parsing Error Recovery

Syntax Errors:

- A Syntax Error occurs when stream of tokens is an invalid string.
- In LL(k) or LR(k) parsing tables, blank entries refer to syntax errors.

How should syntax errors be handled?

- 1. Report error, terminate compilation \Rightarrow not user friendly
- 2. Report error, *recover* from error, search for more errors \Rightarrow better

Error Recovery

Error Recovery: process of adjusting input stream so that parsing may resume after syntax error reported.

- Deletion of token types from input stream
- Insertion of token types
- Substitution of token types

Two classes of recovery:

- 1. Local Recovery: adjust input at point where error was detected.
- 2. Global Recovery: adjust input before point where error was detected.

These may be applied to both LL and LR parsing techniques.

LL Local Error Recovery

Consider LL(1) parsing context:

$$\begin{array}{ccc} Z \to XYZ & & Y \to \mathbf{c} \\ Z \to \mathbf{d} & & Y \to \epsilon \end{array}$$

$$Y \to \mathbf{c}$$

 $Y \to \epsilon$

$$X \to \mathbf{a}$$

 $X \to \mathbf{b} Y \mathbf{e}$

	nullable	first	follow
Z	no	a,b,d	
Y	no yes no	c	a,b,d,e
X	no	a,b	a,b,c,d

LL Local Error Recovery

Local Recovery Technique: in function A(), delete token types from input stream until token type in follow(A) found \Rightarrow *synchronizing* token types.

```
datatype token = a | b | c | d | e;
val tok = ref(getToken());
fun advance() = tok := getToken();
fun eat(t) = if(!tok = t) then advance() else error();
and X() = case !tok of
      a => (eat(a))
     b => (eat(b); Y(); eat(e))
   c => (print "error!"; skipTo[a,b,c,d])
   | d => (print "error!"; skipTo[a,b,c,d])
      e => (print "error!"; skipTo[a,b,c,d])
and skipTo(synchTokens) =
    if member(!tok, synchTokens) then ()
    else (eat(!tok); skipTo(synchTokens))
```

LR Local Error Recovery

Consider:

$$1 E \rightarrow ID$$
 $3 E \rightarrow (E)$ $5 ES \rightarrow ES ; E$ $2 E \rightarrow E + E$ $4 ES \rightarrow E$

• Match a sequence of erroneous input tokens using the *error* token (a terminal).

$$6 E \rightarrow (\text{error})$$
 $7 ES \rightarrow \text{error}; E$

- In general, follow *error* with synchronizing lookahead token.
 - 1. Pop stack (if necessary) until a state is reached in which the action for the *error* token is *shift*.
 - 2. Shift the *error* token.
 - 3. Discard input symbols (if necessary) until a state is reached that has a non-error action in the current state.
 - 4. Resume normal parsing.

Global Error Recovery

Consider LR(1) parsing:

let type a := intArray[10] of 0 in ... end

Local Recovery Techniques would:

- 1. report syntax error at ':='
- 2. substitute '=' for ':='
- 3. report syntax error at '['
- 4. delete token types from input stream, synchronizing on 'in'

Global Recovery Techniques would substitute 'var' for 'type':

- Actual syntax error occurs *before* point where error was detected.
- ML-Yacc uses global error recovery technique ⇒ *Burke-Fisher*
- Other Yacc versions employ local recovery techniques.

Burke-Fisher

Suppose parser gets stuck at n^{th} token in input stream.

• Burke-Fisher repairer tries every *single-token-type* insertion, deletion, and substitution at all points between $(n-k)^{th}$ and n^{th} token.

- Best repair: one that allows parser to parse furthest past n^{th} token.
- \bullet If languages has N token types, then:

total # of repairs = deletions + insertions + substitutions total # of repairs =
$$(k) + (k+1) N + (k) (N-1)$$

Burke-Fisher

In order to backup K tokens and reparse repaired input, 2 structures needed:

- 1. k-length buffer/queue if parser currently processing n^{th} token, queue contains tokens $(n-k) \rightarrow (n-1)$. (ML-Yacc k=15)
- 2. old parse stack if parser currently processing n^{th} token, old stack represents stack state when parser was processing $(n-k)^{th}$ token.
- Whenever token shifted onto current stack, also put onto queue tail.
- Simultaneously, queue head removed, shifted onto old stack.
- Whenever token shifted onto either stack, appropriate reductions performed.

Burke-Fisher Example

- Semantic actions are only applied to old stack.
 - Not desirable if semantic actions affect lexical analysis.
 - Example: typedef in C.

(Figure from MCI/ML.)

Burke-Fisher

For each repair R that can be applied to token $(n-k) \rightarrow n$:

- 1. copy queue, copy n^{th} token
- 2. copy old parse stack
- 3. apply R to copy of queue or copy of n^{th} token
- 4. reparse queue copy (and copy of n^{th} token) from old stack copy
- 5. evaluate R

Choose best repair R, and apply.

Burke-Fisher in ML-YACC

Semantic Values

• Insertions need semantic values

```
%value ID {"bogus"}
%value INT {1}
%value STRING {"STRING")
```

Programmer-Specified Substitutions

- Some single token insertions and deletions are common.
- Some multiple token insertions and deletions are common.