Topic 3: Parsing and Yaccing

COS 320

Compiling Techniques

Princeton University Spring 2015

Prof. David August

Syntactical Analysis

- Every programming language has a set of rules that describe syntax of well-formed programs in language.
- Syntax Analysis (Parsing) Determine if source program satisfies these rules.
- Source program constructs may have recursive structure:

```
digits = [0-9]+
expr = {digits} | "(" {expr} "+" {expr} ")"
```

ullet Finite Automata cannot recognize recursive constructs. (A machine with N states cannot remember a parenthesis-nesting depth greater than N.)

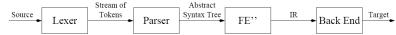
We need a more powerful formalism: Context-Free Grammar

Syntactical Analysis

Front End:

- Lexical Analysis Break source into tokens.
- Syntax Analysis Parse phrase structure.
- Semantic Analysis Calculate meaning.

Our Compiler:



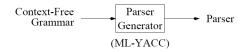
Parser Functions:

- Verify that token stream is valid.
- If it is not valid, report syntax error and recover.
- Build Abstract Syntax Tree (AST).

Context-Free Grammar

Regular Expressions - describe lexical structure of tokens.

Context-Free Grammars - describe syntactic nature of programs.



Definitions

- Language set of strings
- String finite sequence of symbols taken from finite alphabet
 - Regular Expressions describe a language.
 - Context-Free Grammar also describes a language.

	Lexical Analysis	Syntax Analysis
language	set of tokens	set of source programs
		source program
symbol	ASCII character	token

Context-Free Grammars

• Context-Free Grammars consist of a set of productions.

$$symbol \rightarrow symbol symbol \dots symbol$$

- Symbol types:
 - terminal that corresponds to a token-type.
 - non-terminal that denotes a set of strings.
- Left-Hand Side (LHS) non-terminal.
- Right-Hand Side (RHS) terminals or non-terminals
- Start Symbol A special non-terminal.
- Each production specifies how terminals and non-terminals may be combined to form a substring in language.
- Easy to specify recursion:

 $stmt \rightarrow IF \ exp \ THEN \ stmt \ ELSE \ stmt$

Context-Free Grammar

- Also known as BNF (Backus-Naur Form).
- Context-free grammars are more powerful than regular expressions.
 - Any language that can be generated using regular expressions can be generated by a context-free grammar.
 - There are languages that can be generated by a context-free grammar that cannot be generated by any regular expression.
- Examples:
 - Matching parentheses
 - Nested comments

Start Symbol

- String of token-types is in language described by grammar if it can be derived from *start symbol*
- Derivations:
 - 1. begin with start symbol
 - 2. while non-terminals exist, replace any non-terminal with RHS of production
- Multiple derivations exist for given sentence
 - Left-most derivation replace left-most non-terminal in each step.
 - Right-most derivation replace right-most non-terminal in each step.

```
Non-Terminals:
  stmt
                 : Statement
                                              stmt \rightarrow stmt; stmt
  expr
                 : Expression
                                              stmt \rightarrow ID := expr
  expr list : Expression List
                                              stmt \rightarrow PRINT (expr\_list)
Terminals (tokens):
                                              expr \rightarrow ID
  SEMI ";"
                                              expr \rightarrow NUM
  ID
                                              expr \rightarrow expr + expr
  ASSIGN ":="
                                              expr \rightarrow (stmt, expr)
  LPAREN "("
  RPAREN ")"
                                              expr\_list \rightarrow expr
  NUM
                                              expr\_list \rightarrow expr\_list, expr
  PLUS "+"
  PRINT "print"
  COMMA ","
```

Example: Rightmost Derivation

Show that expression can be derived from start symbol.

```
ID := NUM; PRINT(NUM)
a := 12; print(23)
```

11

Example: Leftmost Derivation

Show that expression can be derived from start symbol.

```
ID := NUM; PRINT(NUM)
a := 12; print(23)
```

Parse Trees

- Parse Trees Graphical representation of derivation.
- Each internal node is labeled with a non-terminal.
- Each leaf node is labeled with a terminal.
- Parse Tree of the example using right-most derivation production:

Ambiguous Grammars

A grammar is ambiguous if it can derive a string of tokens with two or more different parse trees.

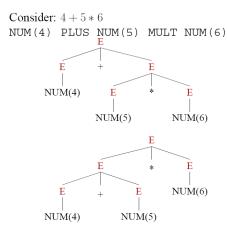
Non-Terminals:

expr : Expression

Terminals (tokens):

NUM
PLUS "+"
MULT "*"

 $expr \rightarrow expr * expr$



13

Ambiguous Grammars

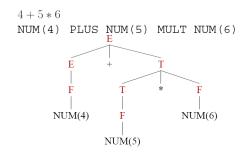
Non-Terminals:

expr : Expression
term : Term (add)
fact : Factor (mult)

Terminals (tokens):

$$expr \rightarrow expr + term$$

 $expr \rightarrow term$
 $term \rightarrow term * fact$
 $term \rightarrow fact$
 $fact \rightarrow ID$
 $fact \rightarrow NUM$



Ambiguous Grammars

- Problem: compilers use parse trees to interpret meaning of parsed expressions.
 - Different parse trees may have different meanings, resulting in different interpreted results.
 - For example, does 4 + 5 * 6 equal 34 or 54?
- Solution: rewrite grammar to eliminate ambiguity.
 - If language doesn't have unambiguous grammar, then you have a bad programming language.
 - Operators have a relative *precedence*. We say some operands *bind tighter* than others. ("*" binds tighter than "+")
 - Operators with the same precedence must be resolved by *associativity*. Some operators have *left associativity*, others have *right associativity*.

End-Of-File Marker

- Parse must also recognize the End-of-File (EOF).
- EOF marker in the grammar is "\$"
- Introduce new start symbol and the production $E' \to E$ \$

Grammars and Lexical Analysis

• Grammars can also describe token structure:

- Can combine lexical analysis and syntax analysis into one module.
- Disadvantages:
 - Regular expression specification is more concise.
 - Separating phases increases compiler modularity.

Context Free Grammars and REs

Base Cases:

17

- Symbol (a): $RE \rightarrow a$
- Epsilon (ϵ): $RE \rightarrow \epsilon$

Inductive Cases:

• Alternation (M|N):

$$RE \rightarrow M$$

$$RE \rightarrow N$$

• Concatenation (M N):

$$RE \rightarrow M N$$

• Kleen closure (M*):

$$RE \rightarrow M RE$$

$$RE \rightarrow \epsilon$$

Context-Free Grammars and REs

- Context-free grammars are more powerful than regular expressions.
 - Any language that can be generated using regular expressions can be generated by a context-free grammar.
 - There are languages that can be generated by a context-free grammar that cannot be generated by any regular expression.
- As a corollary, CFGs are strictly more powerful than DFAs and NFAs.
- The proof is in two parts:
 - Given a regular expression R, we can generate a CFG G such that L(R) = L(G).
 - We can define a grammar G for which there there is no FA F such that L(F) == L(G).

Context-Free Grammar with no RE/FA

$$\begin{array}{c} S \to (S) \\ S \to \epsilon \end{array}$$

- \bullet FAs have a FINITE number of states, N
- FA must "remember" number of "("s, to generate ")"s
- At or before N+1 "("s FA will revisit a state.
- That state represents two different counts of ")"s.
- Both counts must now be accepted.
- One count will be invalid.

Representations

- Regular, right-linear, finite-state grammars: FAs
- Context-free grammars: Push-Down Automata

Further Exploration

We have been talking about Context-Free Grammars.

What is a **context-sensitive grammar?**

21

Outline

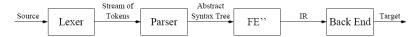
- Recursive Descent Parsing
- Shift-Reduce Parsing
- ML-Yacc
- Recursive Descent Parser Generation

Parsing

Front End:

- Lexical Analysis Break source into tokens.
- Syntax Analysis Parse phrase structure.
- Semantic Analysis Calculate meaning.

Our Compiler:



Parser Functions:

- Verify that token stream is valid.
- If it is not valid, report syntax error and recover.
- Build Abstract Syntax Tree (AST).

22

Recursive Descent Parsing

- Recall discussion on Context-Free Grammars: symbols (terminal, non-terminal), productions, derivations, etc.
- Can parse many grammars using algorithm called recursive descent parsing.
 - A.K.A.: predictive parsing
 - A.K.A.: top-down parsing
 - A.K.A.: LL(1) Left-to-right parse, Leftmost-derivation, 1-symbol lookahead.
- One recursive function for each non-terminal.
- Each production becomes clause in function.

```
Grammar:
```

```
non-terminals: S, L, E
terminals: IF (if), THEN (then), ELSE (else), BEGIN (begin),
     PRINT(print), END(end), SEMI(;), NUM, EQ(=)
S \rightarrow if E then S else S
S \rightarrow begin S L
                    datatype token = EOF | IF | THEN | ELSE | BEGIN |
S \rightarrow print E
                                       PRINT | END | SEMI | NUM | EQ
L \rightarrow end
L \rightarrow : S L
                    val tok = ref (getToken())
E \rightarrow num = num
                    fun advance() = tok := getToken()
                    fun eat(t) = if (!tok = t) then advance() else error()
                    fun S() = case !tok of
                                 ΙF
                                        => (eat(IF); E(); eat(THEN); S();
                                             eat(ELSE); S())
                                 BEGIN => (eat(BEGIN); S(); L())
                                 PRINT => (eat(PRINT); E())
                    and L() = case !tok of
                                  END
                                        => (eat(END))
                                 SEMI => (eat(SEMI); S(); L())
                    and E() =
                                            (eat(NUM); eat(EQ); eat(NUM))
```

The Problem

 $L \rightarrow E$

• If !tok = ID, parser cannot determine which production to use:

$$\begin{array}{ll} L \rightarrow E & \text{(E could be ID)} \\ L \rightarrow L, E & \text{(L could be ID)} \end{array}$$

• Predictive parsing only works for grammars where first terminal symbol of each subexpression provides enough information to choose which production to use.

 $L \to E M$

• Can write predictive parser by eliminating *left recursion*.

Another Example

Grammar:

```
E \rightarrow id
   A \rightarrow S EOF
                                   E \rightarrow num
   S \rightarrow id := E
                                   L \rightarrow E
   S \rightarrow print (L)
                                   L \rightarrow L, E
fun A() =
                              (S(); eat(EOF))
and S() = case !tok of
                         => (eat(ID); eat(ASSIGN); E())
                ID
                         => (eat(PRINT); eat(LPAREN);
                              L(); eat(RPAREN))
and E() = case !tok of
                ID
                         => (eat(ID))
                         => (eat(NUM))
                MUM
and L() = case !tok of
                ID
                          => (?????)
                NUM
                         => (?????)
```

Another Option: Shift-Reduce Parsing

- Given next input token, predictive parser must predict which production to use.
- *Shift-reduce parsing* delays decision until it has seen input token corresponding to entire RHS of production.
 - A.K.A.: bottom-up parsing
 - A.K.A.: LR(k) Left-to-right parse, Rightmost derivation, k-token lookahead
- Shift-reduce parsing can parse more grammars than predictive parsing.
- Parser has stack.
- Based on stack contents and next input token, one of two action performed:
 - 1. Shift push next input token onto top of stack.
 - 2. Reduce choose production $(X \rightarrow ABC)$; pop off RHS (C, B, A); push LHS (X).
- Stack is initially empty.
- Parser points to beginning of input stream.
- If \$ is shifted, then input stream has been parsed successfully.

Shift-Reduce Parsing

How does parser know when to shift or reduce?

- DFA: applied to stack contents, not input stream
- Each state corresponds to contents of stack at some point in time.
- Edges labelled with terms/non-terms that can appear on stack.

29

Example

```
input: ( ID = NUM ; ID = NUM )

stack: (
    action: shift

    input: ( ID = NUM ; ID = NUM )

stack: ( ID
    action: shift

    input: ( ID = NUM ; ID = NUM )

stack: ( ID =
    action: shift

input: ( ID = NUM ; ID = NUM )

stack: ( ID =
    action: shift

input: ( ID = NUM ; ID = NUM )

stack: ( ID = NUM ; ID = NUM )
```

Example

Grammar:

```
1\:A\to S\:EOF
```

$$2 S \rightarrow (L)$$

$$3 \text{ S} \rightarrow id = num$$

4 L
$$\rightarrow$$
 L; S

$$\textbf{5} \; L \to S$$

Input:

```
(a=4;b=5) \rightarrow (ID_a=NUM_4;ID_b=NUM_5) input: ( ID = NUM ; ID = NUM ) 0 \qquad \qquad | stack: action: shift
```

30

Example

```
input: ( ID = NUM ; ID = NUM )

stack: ( S
    action: reduce 5

    input: ( ID = NUM ; ID = NUM )

stack: ( L
    action: shift

input: ( ID = NUM ; ID = NUM )

stack: ( L ;
    action: shift

input: ( ID = NUM ; ID = NUM )

stack: ( L ;
    action: shift

input: ( ID = NUM ; ID = NUM )

stack: ( L; ID
    action: shift
```

• Valid Program: if a then if b then S1 else S2

The Dangling Else Problem

1 $S \rightarrow if E$ then S else S

2 $S \rightarrow \textit{if} \, E \textit{ then } S$

 $3 \; S \to \text{OTHER}$

- 2 interpretations: if a then [if b then S1 else S2] if a then [if b then S1] else S2
- Want first behavoir, but parse will report *shift-reduce conflict* when S1 is on top stack.
- Eliminate Ambiguity by modifying grammar (matched/unmatched):

 $1 \text{ S} \rightarrow \text{M}$

 $2 S \rightarrow U$

3 M \rightarrow *if* E *then* M *else* M

 $4 \text{ M} \rightarrow \text{OTHER}$

5 U \rightarrow *if* E *then* S

6 $U \rightarrow if E$ then M else U

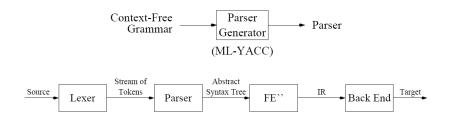
Example

```
input: ( ID = NUM ; ID = NUM )

stack: ( L )
    action: reduce 2
    input: ( ID = NUM ; ID = NUM )

14
    stack: S
    action: ACCEPT
```

ML-YACC (Yet Another Compiler-Compiler)



- Input to ml-yacc is a context-free grammar specification.
- Output from ml-yacc is a shift-reduce parser in ML.

Context-Free Grammar Specification

• CFG specification consists of 3 parts:

User Declarations

%
ML-YACC Definitions

%
Rules

- User Declariarions: define various values that are available to *rules* section.
- ML-YACC Definitions: declare terminal and non-terminal symbols; declare precedences for terminals that help resolve shift-reduce conflicts.
- Rules: specify productions of grammar and semantic actions associated with productions.

Attribute Grammar

- ML-YACC employs attribute grammar scheme
 - Each terminal or non-terminal symbol may have associated attribute/value.
 - When parser reduces using production $A \to \alpha$, semantic action associated with production is exectued in order to compute value for A based on the values of symbols in α .
 - Parser returns value associated with start symbol. (If no attribute, () is returned.)
- Can specify types of atttributes associtated with symbols.

```
%term ID of string | NUM of int | IF | THEN | ...
%nonterm prgm | stmt | expr of int | ...
```

ML-YACC Declarations

• Need to specify type associated with positions of tokens in input file

```
%pos int
```

• Need to specify terminal and non-terminal symbols (no symbols can be in both lists)

```
%term IF | THEN | ELSE |...
%nonterm proq | stmt | expr |...
```

• Optionally specify end-of-parse symbol - terminals which may follow start symbol

```
%eop EOF
```

 Optionally specify start symbol - otherwise, LHS non-terminal of first rule is taken as start symbol

```
%start prog
```

Rules

```
symbol_0: symbol_1 symbol_2 ... symbol_n (semantic_action)
```

- Semantic action typically builds piece of AST corresponding to derived string
- Can access attribute/value of RHS symbol X using X<n>, where n specifies a particular occurrence of X on RHS.

 Type of value computed by semantic action must match type of value associated with LHS non-terminal.

39

```
응응
         ID
               MUM
                     PLUS
                             MINUS
%term
                                      MULT
                                             DIV
%nonterm expr
%pos int
%start expr
%eop EOF
%verbose
응응
expr : ID
                          ()
       NUM
                          ()
                          ()
       expr PLUS expr
```

()

()

ML-YACC and Ambigous Grammars

expr MINUS expr

expr MULT expr

expr DIV expr

- Similarly Consider: 4 + 5 + 6, NUM (4) PLUS NUM (5) PLUS NUM (6)
- We perfer to bind left "+" first.
- ML-YACC will report *shift-reduce* conflicts when parsing strings.
 - -4+5*6, NUM(4) PLUS NUM(5) MULT NUM(6)
 - * At some point, E + E will be on top of stack, "*" will be the current token-type in stream
 - * Parser can reduce by rule $E \rightarrow E + E$, or shift. Prefer *shift*.
 - -4+5+6, NUM(4) PLUS NUM(5) PLUS NUM(6)
 - * At some point, E + E will be on top of stack, "+" will be the current token-type in stream.
 - * Parser can reduce by rule $E \rightarrow E + E$, or shift. Prefer reduce.

ML-YACC and Ambiguous Grammars

- A grammar is ambiguous if it can derive a string of tokens with two or more different parse trees.
- Consider: 4 + 5 * 6, NUM (4) PLUS NUM (5) MULT NUM (6)

NUM(6)

NUM(6)

NUM(5)

NUM(4)

• We perfer to bind "*" tighter than "+".

Directives

Three Solutions:

- 1. Let YACC complain, but demonstrate that its choice (to shift) was correct.
- 2. Rewrite grammar to eliminate ambiguity.
- 3. Keep grammar, but add *precedence directives* which enable conflicts to be resolved. Use %left, %right, %nonassoc
 - For this grammar:
 %left PLUS MINUS
 %left MULT DIV
 - PLUS, MINUS are left associative, bind equally tightly
 - MULT, DIV are left associative, bind equally tightly
 - MULT, DIV bind tighter than PLUS, MINUS

Directives

- Given directives, ML-YACC assigns precedence to each terminal and rule
 - Precedence of terminal based on order in which associativity specified
 - Precedence of rule is the precedence of right-most terminal. For example, precedence(E \rightarrow E + E) = precedence(PLUS).
- Given shift-reduce conflict, ML-YACC performs the following:
 - 1. Find precedence of rule to be reduced, terminal to be shifted.
 - 2. $prec(terminal) > prec(rule) \Rightarrow shift.$
 - 3. $prec(rule) > prec(terminal) \Rightarrow reduce.$
 - 4. prec(terminal) = prec(rule), then:
 - assoc(terminal) = left \Rightarrow reduce.
 - $-\operatorname{assoc}(\operatorname{terminal}) = \operatorname{right} \Rightarrow \operatorname{shift}.$
 - assoc(terminal) = nonassoc \Rightarrow report as error.

Default Behavior

What if directives not specified?

- shift-reduce: report error, *shift* by default.
- reduce-reduce: report error, reduce by rule that occurs first.

What to do:

- shift-reduce: acceptable in well defined cases (dangling else).
- reduce-reduce: unnacceptable. Rewrite grammar.

Precedence Examples

```
input: 4 + 5 * 6

stack: 4 + 5
action: prec(*) > prec(+) -> shift

input: 4 * 5 + 6

stack: 4 * 5
action: prec(*) > prec(+) -> reduce

input: 4 + 5 + 6

stack: 4 + 5
action: assoc(+) = left -> reduce
```

Direct Rule Precedence Specification

Can assign *specific* precedence to rule, rather than precedence of last terminal.

- Use the %prec directive.
- Commonly used for the *unary minus* problem.

```
%left PLUS MINUS
%left MULT DIV
```

- Consider -4 * 6, MINUS NUM(4) MULT NUM(6)
- We perfer to bind left unary minus ("-") tighter. Here, precedence of MINUS is lower than MULT, so we get -(4*6), not (-4)*6.
- Solution:

Syntax vs. Semantics

Consider language with two classes of expressions

• Arithmetic expressions (ae)

```
ae : ae PLUS ae ()
| ID ()
```

• Boolean expressions (be)

```
be : be AND be ()
    | be OR be ()
    | be EQ be ()
    | ID ()
```

- Consider: a := b, ID(a) ASSIGN ID(b):
 - Reduce-reduce conflict parser can't choose between be \rightarrow ID or ae \rightarrow ID.
 - For now ae and be should be aliased let semantic analysis (next phase) determine that a & b + c is a type error.
 - Type checking cannot be done easily in context free grammars.

Problem

- Based on current function and next token-type in input stream, parser must predict which production to use.
- If !tok = ID, parser cannot determine which production to use:

$$L \rightarrow E$$
 (E could be ID)
 $L \rightarrow L$, E (L could be ID)

• Predictive parsing only works for grammars where first terminal symbol of each subexpression provides enough information to choose which production to use.

Recursive Descent/Predictive/LL(1) Parser Generation

Grammar:

```
E \rightarrow id
   A \rightarrow S EOF
                                  E \rightarrow num
   S \rightarrow id := E
                                  L \to E
   S \rightarrow print (L)
                                  L \rightarrow L, E
fun A() =
                             (S(); eat(EOF))
and S() = case !tok of
                        => (eat(ID); eat(ASSIGN); E())
               ID
               PRINT
                        => (eat(PRINT); eat(LPAREN);
                             L(); eat(RPAREN))
and E() = case !tok of
                        => (eat(ID))
               ID
               NUM
                        => (eat(NUM))
and L() = case !tok of
               TD
                        => (33333)
               NUM
                        => (?????)
```

Formal Techniques

Can use formal techniques to determine whether or not a predictive parser can be built for a particular grammar.

- Let γ be a string of terminal and non-terminal symbols
- Need to compute 3 values:
 - 1. For each γ corresponding to RHS of production, must determine if γ can derive empty string $(\epsilon) \Rightarrow$ **nullable**.
 - 2. For each γ corresponding to RHS of production, must determine set of all terminal symbols that can begin any string derived from $\gamma \Rightarrow \mathbf{first}(\gamma)$.
 - 3. For each non-terminal X in grammar, must determine set of all terminal symbols that can immediately follow X in a derivation \Rightarrow **follow**(X).

Computation of Nullable:

- $-\gamma$ is nullable if every symbol $S \in \gamma$ is nullable.
- Check if every S can derive ϵ .

Computation of First

- If T is a terminal symbol, then first $(T) = \{T\}$.
- If X is a non-terminal and $X \to Y_1Y_2Y_3...Y_n$, then

$$\begin{split} & \operatorname{first}(Y_1) \in \operatorname{first}(X) \\ & \operatorname{first}(Y_2) \in \operatorname{first}(X), \text{ if } Y_1 \text{ is nullable} \\ & \operatorname{first}(Y_3) \in \operatorname{first}(X), \text{ if } Y_1, Y_2 \text{ is nullable} \\ & \colon \\ & \operatorname{first}(Y_n) \ \in \ \operatorname{first}(X), \text{ if } Y_1, \ Y_2, \ \dots \ Y_{n-1} \text{ is nullable} \end{split}$$

• Let $\gamma = S_1 S_2 ... S_k$. Then,

$$\operatorname{first}(\gamma) = \begin{cases} \operatorname{first}(S_1) \\ \operatorname{first}(S_2), \operatorname{if} S_1 \text{ is nullable} \\ \operatorname{first}(S_3), \operatorname{if} S_1, S_2 \text{ is nullable} \\ \vdots \\ \operatorname{first}(S_k), \operatorname{if} S_1, S_2, ..., S_{k-1} \text{ is nullable} \end{cases}$$

Building a Predictive Parser

$$Z \to XYZ$$

$$Z \to d$$

$$Y \to \mathbf{c}$$

 $Y \to \epsilon$

$$\begin{array}{ccc} X \to & \mathbf{a} \\ X \to & \mathbf{b} \ Y \ \mathbf{e} \end{array}$$

Initial:

	nullable	first	follow
Z	no no		
Y	no		
Χ	no		

Examine each production in grammar, modifying nullable and adding to first and follow sets, until no more changes can be made.

Iteration 1: nullable first follow Z no Y no X no

Computation of Follow

Let X, Y be non-terminals; γ , γ_1 , and γ_2 be strings of terminals and non-terminals

- if grammar includes production: $X \to \gamma Y$
 - \Rightarrow follow(X) \in follow (Y).
- if grammar includes production: $X \rightarrow \gamma_1 Y \gamma_2$
- \Rightarrow first $(\gamma_2) \in$ follow (Y)
- \Rightarrow follow $(X) \in$ follow (Y), if γ_2 is nullable.

Perform *iterative* technique in order to compute nullable, first, and follow sets for each non-terminal in grammar.

Building a Predictive Parser

$$Z \to XYZ$$
$$Z \to d$$

$$\begin{array}{c} Y \to \mathbf{c} \\ Y \to \epsilon \end{array}$$

$$X \to a$$

 $X \to b Y e$

Iteration 1: nullable first follow Z no Y yes

Y yes X no

Iteration 2:

	nullable	first	follow
Z	no		
Y	yes		
Χ	no		

1te	ration 5:		
	nullable	first	follow
Z	no yes	d,a,b	
Y	yes	c	e,d,a,b
Χ	no	a,b	c,d,a,b

No Changes

Predictive Parsing Table

	nullable	first	follow
Z	no	d,a,b	
Y	no yes no	c	e,d,a,b
Χ	no	a,b	c,d,a,b

Build predictive parsing table from nullable, first, and follow sets.

	a				
\overline{Z}	$Z \rightarrow XYZ$	$Z \to XYZ$		$Z \to d$	
Y	$Y \to \epsilon$	$Y \to \epsilon$	$Y \to c$	$Y \to \epsilon$	$Y \to \epsilon$
X	$Z \to XYZ$ $Y \to \epsilon$ $X \to a$	$X \to bYe$			

- Enter $S \to \gamma$ in row S, column T: for each $T \in \operatorname{first}(\gamma)$.
- If γ is nullable, enter $S \to \gamma$ in row S, column T: for each $T \in \text{follow}(S)$.
- ullet Entry in row S, column T tells parser which clause to execute if current function is S() and next token-type is T
- Blank entries are syntax errors.

Example

$$S' \to S \$ \qquad S \to \text{ IF } E \text{ THEN } A \text{ ELSE } A \qquad T \to \text{ NUM}$$

$$S \to E \qquad E \to E + T \qquad A \to \text{ ID = NUM}$$

$$S \to \text{ IF } E \text{ THEN } A \qquad E \to T$$

Iteration 1: follow nullable first S'no Sno IF \$ E no \$, THEN, + NUM \$, THEN, + Tno \$, ELSE A no

Itei	ation 2:		0.44
	nullable	first	follow
S'	no	IF	
S	no no no no	IF	\$
E	no		\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE
$\frac{1}{A}$	no		

Predictive Parsing Table

If the predictive parsing table contains *no* duplicate entries, can build predictive parser for grammar.

- Grammar is LL(1) (left-to-right parse, left-most derivation, 1 symbol lookahead).
- Grammar is LL(k) if its LL(k) predictive parsing table has no duplicate entries.
 - Rows correspond to non-terminals, columns correspond to every possible sequence of k terminals.
 - The first(γ) = set of all k-length terminal sequences that can begin any string derived from γ .
 - LL(k) paring tables can be too large.
 - Ambiguous grammars are not LL(k), \forall k.

Example

$$S' \to S \$ \qquad S \to \text{ IF } E \text{ THEN } A \text{ ELSE } A \qquad T \to \text{ NUM}$$

$$S \to E \qquad E \to E + T \qquad A \to \text{ ID = NUM}$$

$$S \to \text{ IF } E \text{ THEN } A \qquad E \to T$$

Itei	ration 3:			Itei	ation 4:		
	nullable	first	follow		nullable	first	follow
S'	no	IF		S'	no	IF, NUM	
S	no	IF, NUM	\$	S	no	IF, NUM	\$
E	no	NUM	\$, THEN, +	E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +	T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE	A	no	ID	\$, ELSE

No futher changes

Predictive Parsing Table

	nullable	first	follow
S'	no	IF, NUM	
S	no	IF, NUM	\$
E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no no no no no	ID	\$, ELSE

Build predictive parsing table from nullable, first, and follow sets.

	IF	THEN	ELSE	+	NUM	ID	=	\$
S'	$S' \to S$				$S' \to S$			
S	$S \to \text{IF } E \text{ THEN } A$ $S \to \text{IF } E \text{ THEN } A \text{ ELSE } A$				$S \to E$			
E					$E \to E + T$ $E \to T$			
T					$T \rightarrow NUM$			
A						$A \rightarrow ID = NUM$		

Table has duplicate entries \Rightarrow grammar is not LL(1)!

Problems

2.
$$S \rightarrow \text{IF } E \text{ THEN } A$$

 $S \rightarrow \text{IF } E \text{ THEN } A \text{ ELSE } A$

- Two productions begin with same symbol.
- first(IF E THEN A) = first(IF E THEN A ELSE A)
- Solution: use *left-factoring* $S \rightarrow \text{IF } E \text{ THEN } A V$

$$V \to \epsilon$$

$$V \rightarrow \text{ELSE } A$$

Problems

1.
$$E \xrightarrow{E} E + T$$
$$E \xrightarrow{} T$$

- first(E+T) = first(T)
- When in function E(), if next token is NUM, parser will get stuck.
- Grammar is *left-recursive* left-recursive grammars cannot be LL(1).
- Solution: rewrite grammar so that it is *right-recursive*.

$$E \to TE'$$

$$E' \to \epsilon$$

$$E' \rightarrow + TE'$$

• In general, $X \to X\gamma \over X \to \alpha$ derives strings of form $\alpha \gamma^*$ (α doesn't start with X). These two productions can be rewritten as follows:

$$X \to \alpha X'$$

$$X' \to \epsilon$$

$$X' \to \gamma X'$$

Example

Show that modified grammar is LL(1).

$$S' \to S$$

$$S \to E$$

$$V \to \text{ ELSE } A$$

 $E' \rightarrow + TE$

$$T \rightarrow \text{NUM}$$

 $A \rightarrow \text{ID} = \text{NUM}$

$$S \to IF$$
 $V \to \epsilon$

Show that the grammar is LL(1).

Outline

- LR(0)
- SLR
- LR(1)
- LALR(1)

Example

Show that modified grammar is LL(1). Build predictive parsing table.

	nullable		follow
S'	no	IF,NUM	
S	no	IF,NUM	\$
V	yes	ELSE	\$
E	no	NUM	\$, THEN
E'	yes	+	\$, THEN
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

	IF	THEN	ELSE	+	NUM	ID	=	\$
S'	$S' \rightarrow S$				$S' \rightarrow S$			
S	$S \rightarrow \text{IF } E \text{ THEN } A V$				$S \rightarrow E$			
V			$V \rightarrow \text{ELSE } A$					$V \rightarrow \epsilon$
E					$E \rightarrow TE'$			
E'		$E' \rightarrow \epsilon$		$E' \rightarrow + TE'$				$E' \rightarrow \epsilon$
T					$T \rightarrow NUM$			
A						$A \rightarrow \text{ID} = \text{NUM}$		

Table does not have duplicate entries \Rightarrow modified grammar is LL(1)!

Shift-Reduce, Bottom Up, LR(1) Parsing

- Shift-reduce parsing can parse more grammars than predictive parsing.
- Shift-reduce parsing has stack and input.
- Based on stack contents and next input token, one of two action performed:
 - 1. Shift push next input token onto top of stack.
 - 2. Reduce choose production (X \rightarrow ABC); pop off RHS (C, B, A); push LHS (X).
- If \$ is shifted, then input stream has been parsed successfully.

LR(k)

Can generalize to case where parser makes decision based on stack contents and next k tokens. LR(k):

- Left-to-right parse
- right-most derivation
- k-symbol lookahead

LR(k) parsing, k > 1, rarely used in compilation:

- ullet DFA too large: need transition for every sequence of k terminals.
- Most programming languages can be described by LR(1) grammars.

Parsing Algorithm

Look up DFA state on top of stack, next terminal in input:

- shift(*n*):
 - Advance input by one.
 - Push input token on stack with n (the new state).
- reduce(*k*):

71

- Pop stack as many times as number of symbols on RHS of rule k.
- Let X be LHS of rule k
- In state now on top of stack, look up X to get goto(z)
- Push X on stack with z (the new state).
- accept → stop, report success.
- \bullet error \rightarrow stop, report syntax error.

To understand LR(k) parsing, first focus on LR(0) parser construction using an example.

Shift Reduce Parsing DFA

Parser uses DFA to make shift/reduce decisions:

- Each state corresponds to contents of stack at some point in time.
- Edges labeled with terminals/non-terminals.

Rather than scanning entire stack to determine current DFA state, parser can remember state reached for each stack element.

• Transition table for LR(1) or LR(0) DFA:

	Terminals (T_1, T_2, \ldots, T_n)	Non-Terminals (N_1, N_2, \dots, N_n)
1	actions	actions
2	$\operatorname{sn} o \operatorname{shift} \operatorname{n}$	$gz \rightarrow goto z$
3	$\text{rk} \rightarrow \text{reduce k}$	
÷	$a \rightarrow accept$	
n	\rightarrow error	

LR(0) Parsing

$$1 S' \to S \$$$
$$2 S \to (L)$$

 $S' \rightarrow .S$ \$

 $S \rightarrow .(L)$

$$3 S \rightarrow \mathbf{x}$$

 $4 L \rightarrow S$

$$5\;L\to L,S$$

Initially, stack empty, input contains 'S' string followed by a '\$':

- Combination of production and '.' called LR(0) item.
- '.' specifies parser position.
- \bullet Three items represent $\mathit{closure}$ of: $S' \to .S \ \$
- Closure adds more items to a set when dot exists to left of a non-terminal.

LR(0) States

LR(0) Parsing

$$1 S' \to S \$$$
$$2 S \to (L)$$

$$\begin{array}{c} 3\:S \to \ \mathbf{x} \\ 4\:L \to S \end{array}$$

$$5\;L\to L,S$$

LR(0) states:

73

Transition Table

i					ф	l a	~	
	()	X	,	\$	S'	S	L
1								
2								
3								
4								
5								
6								
7								
8								
9								

No duplicate entries \Rightarrow grammar is LR(0)

DFA Table Entry Computation

To compute transition table from state diagram perform the following:

- ${}^{i}S' \rightarrow S.\$$] \Rightarrow table[i, \$] = a.
- $i \longrightarrow T$, Terminal $T \Rightarrow \text{table}[i, T] = sj$.
- $i \longrightarrow N$, Non-Terminal $N \Rightarrow \text{table}[i, N] = gj$.
- $[A \rightarrow \gamma] \Rightarrow \text{table}[i, T] = rk$, for all terminals T.

Using The Transition Table

$$\begin{array}{c} 1 \: S' \to S \: \$ \\ 2 \: S \to (L) \end{array}$$

$$\begin{array}{c} 3 \: S \to \mathbf{x} \\ 4 \: L \to S \end{array}$$

$$5\:L\to L,S$$

	()	X	,	\$	S'	S	L
1	s3		s2				g9	
2	r3	r3	r3	r3	r3			
3	s3 r3 s3 r4 r2 s3 r5		s2				g5	g4
4		s6		s7				
5	r4	r4	r4	r4	r4			
6	r2	r2	r2	r2	r2			
7	s3		s2				g8	
8	r5	r5	r5	r5	r5			
9					a			
	1					'		

Another Example

$$1 S' \to E \$$$
$$2 E \to T + E$$

$$3\:E\to T$$

$$4 T \rightarrow \mathbf{x}$$

LR(0) states:

77

Another Example - SLR

Transition Table:

a	msmon radic.							
		+	X	\$	S'	E	T	
	1		s3			g2	g4	
	2			a				
	3	r4	r4	r4				
	4	r4 s5/r3	r3	r3				
	5		s3			g6	g4	
	6	r2	r2	r2				

Follow Set Computation:

	nullable	first	follow
S'	no	X	
E	no	\mathbf{X}	\$
T	no	X	+,\$
	-		

SLR Transition Table:

No duplicate entries \Rightarrow grammar is SLR.

 $1 S' \rightarrow E$ \$ $3 E \rightarrow T$

 $2 E \rightarrow T + E \qquad 4 T \rightarrow \mathbf{x}$

Another Example - SLR

Transition Table:

			_		_	
	+	X	\$	S'	E	T
1		s3			g2	g4
2			a			
3	r4	r4	r4			
4	r4 s5/r3	r3	r3			
5		s3			g6	g4
6	r2	r2	r2			

Duplicate entries \Rightarrow grammar is NOT LR(0)

Can make grammar bottom-up parsable using more powerful parsing techniques: SLR (Simple LR)

- Use same LR(0) states.
- ${}^{i}\overline{A \to \gamma}$.] \Rightarrow table[i,T] = reduce(k), for all terminals $T \in \text{follow}(A)$

Yet Another Example

Sometimes grammar can't be parsed using SLR techniques.

$$1 S' \to S \$$$
$$2 S \to V = E$$

$$3 S \to E$$
$$4 E \to V$$

$$5 V \to \mathbf{x} \\
6 V \to *E$$

This grammar is not SLR. Need more powerful parsing algorithm \Rightarrow LR(1)

LR(1) Parsing

- LR(1) item consists of two components: $(A \rightarrow \alpha.\beta, x)$
 - 1. Production

81

- 2. Lookahead symbol (x)
- α is on top of stack, head of input is string derivable from β x.

LR(0) closure computation

LR(1) closure computation

- Initial: $A \rightarrow \alpha.X$
- Initial: $A \rightarrow \alpha . X\beta$, z
- Add all items $X \rightarrow .\gamma$
- Add all items $(X \to .\gamma, \omega)$ for each $\omega \in \text{first}(\beta z)$
- Repeat closure computation
- Repeat closure computation
- shift, goto, accept table entries computed same way as LR(0)/SLR.
- reduce entries computed differently:

$$[A \rightarrow \gamma., z] \Rightarrow table[i,z] = reduce(k)$$

Yet Another Example – LR(1)

	=	X	*	\$	S'	S	L	V
1		s11	s12			g2	g10	g3
2				à				
3	s4			r4				
4		s7	s8				g5	g6
1 2 3 4 5 6 7 8 9				r2				
6				r4				
7				r5				
8		s7	s8				g 9	g6
9				r6				
				r3				
11	r5			r5				
12		s11	s12				g13	g14
13	r6			r6				
14	r4			r4				

No duplicate entries \Rightarrow grammar is LR(1)

Yet Another Example – LR(1)

$$1 S' \to S$$

$$2 S \to V = E$$

$$3S \to E$$

$$4E \to V$$

$$5 V \to \mathbf{x} \\
6 V \to *E$$

LR(1) states:

LALR(1)

- Problem with LR(1) parsers: tables too large!
 - Can make smaller table by merging states whose items are identical except for look-ahead sets ⇒ LALR(1) (Look-Ahead LR(1)).
 - LALR(1) transition table may contain shift-reduce/reduce-reduce conflicts where LR(1) table has none.

LALR(1)

Can make smaller table by merging states whose items are identical except for lookahead sets \Rightarrow LALR(1) (Look-Ahead LR(1)).

	=	X	*	\$	S'	S	L	V
1		s11	s12			g2	g10	g3
2				a				
	s4			r4				
3 4 5		s7	s8				g5	g6
5				r2				
6/14	r4			r4				
7/11	r5			r5				
8/12		s7/11	s8/12				g9/13	g6/14
9/13	r6			r6				
10				r3				

No conflicts \Rightarrow grammar is LALR(1).

Parsing Error Recovery

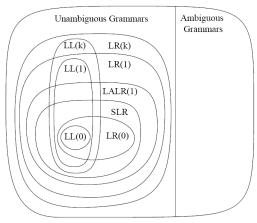
Syntax Errors:

- A Syntax Error occurs when stream of tokens is an invalid string.
- In LL(k) or LR(k) parsing tables, blank entries refer to syntax errors.

How should syntax errors be handled?

- 1. Report error, terminate compilation \Rightarrow not user friendly
- 2. Report error, recover from error, search for more errors \Rightarrow better

Parsing Power



ML-YACC uses LALR(1) parsing because reasonable programming languages can be specified by an LALR(1) grammar. (Figure from MCI in ML.)

Error Recovery

Error Recovery: process of adjusting input stream so that parsing may resume after syntax error reported.

- Deletion of token types from input stream
- Insertion of token types
- Substitution of token types

Two classes of recovery:

- 1. Local Recovery: adjust input at point where error was detected.
- 2. Global Recovery: adjust input before point where error was detected.

These may be applied to both LL and LR parsing techniques.

LL Local Error Recovery

Consider LL(1) parsing context:

$$Z \to XYZ$$
$$Z \to d$$

$$Y \to \mathbf{c}$$

 $Y \to \epsilon$

$$\begin{array}{c} X \to \ \mathbf{a} \\ X \to \ \mathbf{b} \ Y \ \mathbf{e} \end{array}$$

	nullable	first	follow
Z	no	a,b,d	
Y	no yes no	c	a,b,d,e
X	no	a,b	a,b,c,d

LR Local Error Recovery

Consider:

$$1 E \to ID
2 E \to E + E$$

$$3 E \rightarrow (E)$$

 $4 ES \rightarrow E$

$$5 ES \rightarrow ES ; E$$

• Match a sequence of erroneous input tokens using the *error* token (a terminal).

$$6 E \rightarrow \text{(error)}$$

$$7 ES \rightarrow \text{error}; E$$

- In general, follow error with synchronizing lookahead token.
 - 1. Pop stack (if necessary) until a state is reached in which the action for the *error* token is *shift*.
 - 2. Shift the error token.
 - 3. Discard input symbols (if necessary) until a state is reached that has a non-error action in the current state.
 - 4. Resume normal parsing.

LL Local Error Recovery

Local Recovery Technique: in function A(), delete token types from input stream until token type in follow(A) found \Rightarrow *synchronizing* token types.

```
datatype token = a | b | c | d | e;
val tok = ref(getToken());
fun advance() = tok := getToken();
fun eat(t) = if(!tok = t) then advance() else error();
...
and X() = case !tok of
        a => (eat(a))
        | b => (eat(b); Y(); eat(e))
        | c => (print "error!"; skipTo[a,b,c,d])
        | d => (print "error!"; skipTo[a,b,c,d])
        | e => (print "error!"; skipTo[a,b,c,d])
and skipTo(synchTokens) =
    if member(!tok, synchTokens) then ()
    else (eat(!tok); skipTo(synchTokens))
```

Global Error Recovery

Consider LR(1) parsing:

```
let type a := intArray[10] of 0 in ... end
```

Local Recovery Techniques would:

- 1. report syntax error at ':='
- 2. substitute '=' for ':='
- 3. report syntax error at '['
- 4. delete token types from input stream, synchronizing on 'in'

Global Recovery Techniques would substitute 'var' for 'type':

- Actual syntax error occurs before point where error was detected.
- ullet ML-Yacc uses global error recovery technique \Rightarrow Burke-Fisher
- Other Yacc versions employ local recovery techniques.

Burke-Fisher

Suppose parser gets stuck at n^{th} token in input stream.

• Burke-Fisher repairer tries every *single-token-type* insertion, deletion, and substitution at all points between $(n-k)^{th}$ and n^{th} token.

- Best repair: one that allows parser to parse furthest past n^{th} token.
- If languages has N token types, then: total # of repairs = deletions + insertions + substitutions total # of repairs = (k) + (k+1) N + (k) (N-1)

Burke-Fisher Example

 $Current \\ Stack \\ +_{16} \\ E_{11} \\ \vdots =_{6} \\ id_{4} \\ Stack \\ \vdots =_{6} \\ id_{4} \\ \vdots \\ S_{2} \\ \downarrow$ $a := 7 \quad \underbrace{; \ b := c + (}_{6\text{-token queue}} \quad d := 5 + 6 , \ d) \ \$$

- Semantic actions are only applied to old stack.
 - Not desirable if semantic actions affect lexical analysis.
 - Example: typedef in C.

(Figure from MCI/ML.)

Burke-Fisher

In order to backup K tokens and reparse repaired input, 2 structures needed:

- 1. k-length buffer/queue if parser currently processing n^{th} token, queue contains tokens $(n-k) \rightarrow (n-1)$. (ML-Yacc k=15)
- 2. *old parse stack* if parser currently processing n^{th} token, old stack represents stack state when parser was processing $(n-k)^{th}$ token.
- Whenever token shifted onto current stack, also put onto queue tail.
- Simultaneously, queue head removed, shifted onto old stack.
- Whenever token shifted onto either stack, appropriate reductions performed.

Burke-Fisher

For each repair R that can be applied to token $(n-k) \rightarrow n$:

- 1. copy queue, copy n^{th} token
- 2. copy old parse stack
- 3. apply R to copy of queue or copy of n^{th} token
- 4. reparse queue copy (and copy of n^{th} token) from old stack copy
- 5. evaluate R

Choose best repair R, and apply.

Burke-Fisher in ML-YACC **Semantic Values** • Insertions need semantic values %value ID {"bogus"} %value INT {1} %value STRING {"STRING") **Programmer-Specified Substitutions** • Some single token insertions and deletions are common. • Some multiple token insertions and deletions are common. %change EQ -> ASSIGN | SEMICOLON ELSE -> ELSE -> IN INT END