The Compiler

Topic 2: Lexing and Flexing e W R
prin " n", i);
Lexical Analysis o }
g
Syntax Analysis Z, i=0
)) " T L6:
COS 320 Semantic Analysis % ?ALLI(printf, "%d\n", i)
IR Code Generation i=41+1
if(i < 20) GOTO L6
I Intermediate Representation 00 Y 2av
. : stringz" n"
.y . T @
Compiling Techniques R Optmizaion 2 adal £37 - 0, z0
Target Code Generation 3 addl r36 = @ltoff(.LCO), gp
v Target Code Optimization % -Le: l;‘lgé:ai;}sztlf’.m:?; b0 - princt#
I " | cmp4.ge p6, p7 = 19, r37
Target Program (p6) br.cond.dptk .L6
Princeton University A . : . :
Spring 2015 e Lexical Analysis: Break into tokens (think words, punctuation)
e Syntax Analysis: Parse phrase structure (think document, paragraphs, sentences)
: e Semantic Analysis: Calculate meanin
Prof. David August ¢ alysis: L2 &
2
Lexical Analysis Lexical Analysis Example

X =(y +4.0);
e Lexical Analysis: Breaks stream of ASCII characters (source) into tokens

e Token: Sequence of characters treated as a unit

e Each token has a token type:

1D foo,x, listCount NUM 50, —100
REAL 10.45,3.14,-2.1 IF if
SEMI ; ASSIGN =
LPAREN (RPAREN)

e Some tokens have associated semantic information:

foo ID(foo)
~100 NUM(—100)
10.45 RFEAL(10.45)

e White space and comments often discarded.

Implementing a Lexer

Regular Expressions

The first phase of a compiler is called the Lexical Analyzer or Lexer.

Implementation Options:
1. Write Lexer from scratch.

2. Use Lexical Analyzer Generator.

Lexer
—
Generator
] Stream of
Source Tokens
—* LCXG[’ —

How do we describe the source language tokens to the Lexer Generator?

Using another language of course!

Yeah, but how do we describe the tokens in that language?

Regular Expressions

Some Definitions:
e Alphabet - a collection of symbols (ASCII is an alphabet)
o String - finite sequence of symbols taken from finite alphabet
e Language - set of sirings
e Examples:
— ML Language - set of all strings representing correct ML programs (INFINITE).
— Language of ML keywords - set of all strings which are ML keywords (FINITE).
— Language of ML tokens - set of all strings which map to ML tokens (INFINITE).
Regular Expressions (REs)
o REs specify languages (possibly infinite) using finite descriptions.

e REs are good for specifying the language of a language’s tokens.

They are also good at specifying a language that can specify the language of a language’s tokens.

Regular Expression Examples

Construction

Base Cases:

e Symbol: for each symbol e in alphabet, « is a RE denoting language containing only
the string a.

e Epsilon (e): a language containing only the empty string
Inductive Cases: (assume M and N are regular expressions)
e Alternation (M |N): a RE denoting strings in M or N.
a | b—{a, b}
e Concatenation (MN): a RE denoting strings in M concatenated with those in N.
(a | b)(a | ¢) —{aa, ac, ba, bc}

e Kleen closure (M*): a RE denoting strings formed by concatenating zero or more
strings, all of which are in M.

(a | b)x—={e, a, b, aa, ab, ba, bb, aaa, aab, ...}

Finite Automata

RE’s | Lexer
Generator

1

Source
Lexer

Finite Automata

Stream of
Tokens

Finite Automata
Finite Automaton: a computational model of a machine with limited memory

A finite automaton has:

e Finite number of states

e Set of edges, each directed from one state to another, labeled with a single symbol

e A start state

e One or more final states

Finite Automata Examples

10

e Language recognized by FA is set of strings it accepts.
e Accept or Reject

— Start in start state

— An edge is traversed for each symbol in input string.

— After n transitions for n-symbol string, if in final state, ACCEPT
— If in non-final state or no valid edge was found during traversal, REJECT

Classes of Finite Automata

11

12

Deterministic Finite Automata (DFA)
e Edges leaving a node are uniquely labeled.
Non-deterministic Finite Automata (NFA)
e Two or more edges leaving a node can be identically labeled.
e An edge can be labeled with ¢.
Implementing Lexer:

e RE — NFA — DFA

NFA Example

RE to NFA Example

RE to NFA Rules

14

NFA to DFA Conversion

15

Idea: Avoid guessing by trying all possibilities simultaneously.

Basic Functions
e edge(s, a) = All NFA states reachable from state 7.s by traversing label a.

o closure(S) = All reachable NFA states from s € S by traversing label e.
closure(S) = S U (Usesedge(s, €))
o DF Aedge(D, a) = All reachable NFA states from s € D by traversing a and e
edges.
DF Aedge(D, a) = closure (Usepedge(s,a))

16

NFA to DFA Example

17

The Longest Token

DFA Representation

Coding the DFA: The Transition Matrix and Finality Array

18

Other Useful Techniques

Lexer must find longest matching token.

ifzs8 ID not IF, ID
iff IFF not IF, ID

e Save most recent final state and position in stream

e Update when new final state found

19

Read Chapters 1 and 2.

Equivalent states:
e Eliminate redundant states, smaller FA.
e Do Exercise 2.6 (hand in optional).
FA — RE:
e Useful to confirm correct RE — FA.
e GNFAs!
e See: Introduction to the Theory of Computation by Michael Sipser

20

The Compiler

ML Lex, Lex, Flex, ...

for(i=0; 1<20; i++) {
printf ("%d\n", i);

Source Program

Lexical Analysis =
g

Syntax Analysis z i=0

S Analy I L6:

Semantic Analysis 3 CALL (printf, "d\n", i)
= i=1i+1

IR Code Generation
if(i < 20) GOTO Lé

| Intermediate Representation

.LCO0: stringz"%d\n"
IR Optimization

addl r37 = 0, r0

addl r36 = @ltoff(.LCO), gp
.L6: br.call.sptk.many b0 = printf#

adds r37 = 1, r37

cmp4.ge p6, p7 = 19, r37

(p6) br.cond.dptk .L6

Target Code Generation

ANI-0vd

' Target Code Optimization

| Target Program

e Lexical Analysis: Break into tokens (think words, punctuation)
e Syntax Analysis: Parse phrase structure (think document, paragraphs, sentences)

e Semantic Analysis: Calculate meaning

22

ML Lex

The first phase of a compiler 1s called the Lexical Analyzer or Lexer.

Implementation Options:
1. Write Lexer from scratch.

2. Use Lexical Analyzer Generator.

RE’s | Lexer
—_—
Generator
' Stream of
Source Tokens
Lexer ———=

Finite Automata
o ml-lex is a lexical analyzer generator for ML.

e lex and flex are lexical analyzer generators for C.

Lexical Specification

e Input to ml-lex is a set of rules specifying a lexical analyzer.
e Output from ml-lex is a lexical analyzer in ML.
e A rule consists of a pattern and an action:

— Pattern is a regular expression.

— Action is a fragment of ordinary ML code. (Typically returns a token type to
calling function.)

e Examples:

if => (print ("Found token IF")) ;
[0-9]+ => (print ("Found token NUM")) ;

e General Idea: When prefix of input matches a pattern, the action is executed.

24

e Lexical specification consists of 3 parts:

User Declarations

L)
)

ML-LEX Definitions

0.0
)

Rules

e User Declarations:

— User can define various values that are available to the action fragments.
— Two values must be defined in this section:
type lexresult
- type of the value returned by each rule action.
fun eof ()
- called by lexer when end of input stream reached.

Lexical Specification

25

Lexical Specification

o Lexical specification consists of 3 parts:

User Declarations

o0
k)

ML-LEX Definitions

)
)

Rules

o ML-Lex Definitions:

— User can define regular expression abbreviations:

DIGITS=[0-9]+;
LETTER= [a-zA-Z] ;

— Define start states to permit multiple lexers to run together.

%s STATE1l STATE2 STATE3;

26

Rule Patterns

e Lexical specification consists of 3 parts:

User Declarations

L)
)

ML-LEX Definitions

o9
3

Rules

e Rules:

<start_state_ list> regular _expression => (action_code) ;
e A rule consists of a pattern and an action:
— Pattern 1s a regular expression.
— Action 1s a fragment of ordinary ML code. (Typically returns a token type to
calling function.)

e Rules may be prefixed with a list of start states (defined in ML-LEX Definition).

Rule Actions

27

symbol matches

a mdividual character “a” (not for reserved chars 2,* +,[,{)
\{ reserved character {

[abc] alblc

[a-zA-Z] |lowercase and capital letters

\n

\t

“abc?”
{LETTER}
a*

at

a?

alb

any character except new line

newline

tab

abe? taken literally (reserved chars as well)

Use abbreviation LETTER defined in ML-LEX Definitions
0 or more a’s

1 ormore a’s

Oorla

aorb

if |iff => (print("Found token IF or IFF"));

[0-9]+

=> (print ("Found token NUM")) ;

28

e Actions can use various values defined in User Declarations section.
e Two values always available:

type lexresult

- type of the value returned by each rule action.
fun eof ()

- called by lexer when end of input stream reached.

o Several special variables also available to action fragments.
— yytext - input substring matched by regular expression.
— yypos - file position of beginning of matched string.

—continue () - recursively calls lexing engine.

Start States

Rule Matching and Start States

o Start states permit multiple lexical analyzers to run together.
o Rules prefixed with a start state is matched only when lexer is in that state.
e States are entered with YYBEGIN.

e Example:

o\°

o° o\° o\°
0
(@]
@]
=
=
=
=4
=

oe

<INITIAL> if => (print("Token IF")) ;
<INITIAL> [a-zl+ => (print ("Token ID")) ;

<INITIAL> "(*" => (YYBEGIN COMMENT; continue()) ;
<COMMENT> "*)" => (YYBEGIN INITIAL; continue()) ;
<COMMENT> "\n"|. => (continue()) ;

Rule Disambiguation

30

<start_state_list> regular_expression => (action_code) ;
e Regular expression matched only if lexer is in one of the start states in start state list.
e If no start state list specified, the rule matches in all states.
e Lexer begins in predefined start state: INITIAL

If multiple rules match in current start state, use Rule Disambiguation.

Example

e Longest match - longest initial substring of input that matches regular expression is
taken as next token.

if8 matches ID(''if8’ '), not IF () and NUM(8).

e Rule priority - for a particular substring which matches more than one regular ex-
pression with equal length, choose first regular expression in rules section.

If we want if to match IF (), not ID('*if’ "), put keyword regular ex-
pression before identifier regular expression.

32

(¥ -*- ml -*- *)

type lexresult = string

fun eof () = (print("End-of-file\n"); "EOF")

%

INT=[1-9] [0-9] *;

%3 COMMENT;

%%

> (YYBEGIN COMMENT; continue());

(YYBEGIN INITIAL; continue());
(continue ());

<INITIAL>"/*"
<COMMENT>"* /1
<COMMENT>"\n"| .

nmonmou
AR

<INITIAL>if => (print ("Token IF\n");"IF");

<INITIAL>then => (print ("Token THEN\n");"THEN") ;
<INITIAL>{INT} => (print ("Token INT(" "~ yytext ~ ")\n");"INT");
<INITIAL>" "|"\n"|"\t" > (continue());

<INITIAL>. > (print ("ERR: '" ~ yytext ~ "’ .\n");"ERR");

Example in Action

33

% cat x.txt

if 999 then 0999
/* This is a comment 099 if */
if 12 then 12

% sml

Standard ML of New Jersey, Version 109.33, November 21,
- CM.make () ;

[.....]

val it = () : unit

- MyLexer.tokenize ("x.txt");

Token IF
Token INT(999)
Token THEN
ERR: '0’.
Token INT(999)
Token IF
Token INT(12)
Token THEN
Token INT(12)
End-of-file
val it = () : unit

1997 [CM;

-1

