A 1 gO Il th m N ROBERT SEDGEWICK | KEVIN WAYNE Shortest pGI’hS in an edge-weighted digrcph

Given an edge-weighted digraph, find the shortest path from s to .

edge-weighted digraph

4->5 0.35
5->4 0.35
4.4 SHORTEST PATHS PR
5->7 0.28
7->5 0.28
» APls 5->1 0.32
) 0->4 0.38
» shortest-paths properties 0r 0 6
. : 7->3 0.39
- » Dijkstra's algorithm
Algorithms J hgd " e Ok
FOURTH EDITION - M -> . 0 &
» edge-weighted DAGs s 00 (°)
. : 3-56 0.52
ROBERT SEDGEWICK | KEVIN WAYNE } negahve Welghfs 6—>0 0 58 ShortESt path from0t06
. . 6->4 0.93 0->2 0.26
http://algs4.cs.princeton.edu 257 0.34
7->3 0.39
3-56 0.52
0.26 + 0.34 + 0.39 + 0.52 = 1.51
Google maps Shortest path applications

« PERT/CPM.
» Map routing.

e

2 ety

Medical Center 2
At Princeton “get™™ 2

» Seam carving.
« Texture mapping.

Pringéton
Cemetery

« Robot navigation.

i

» Typesetting in TeX.
« Urban traffic planning.

« Optimal pipelining of VLSI chip.

« Telemarketer operator scheduling.

\g i@% 8 ¥ 0 « Routing of telecommunications messages.
A) \2 - L\ v + Network routing protocols (OSPF, BGP, RIP).
@' Pt « Exploiting arbitrage opportunities in currency exchange.
/ \ \ppaviancanecs « Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

1000 ft & N .
| 200m | / /58 Serngdale ©2005 Google - Map data ©2005 NAVTEQ™ -1

) Galf Clib

Shortest path variants

Which vertices?

* Single source: from one vertex s to every other vertex.

 Single sink: from every vertex to one vertex t.

» Source-sink: from one vertex s to another .
« All pairs: between all pairs of vertices.

Restrictions on edge weights?
« Nonnegative weights.
« Euclidean weights.
« Arbitrary weights.

Cycles?
« No directed cycles.
« No "negative cycles."

185 West San C;

which variant?

Simplifying assumption. Each vertex is reachable from s.

Weighted directed edge API

"8 P
1] Ay
Street (CA-82) m

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

» APIs

Weighted directed edge: implementation in Java

public class DirectedEdge

DirectedEdge(int v, int w, double weight)

int
int
double

String

from(Q)
to()
weight()

toString()

Idiom for processing an edge e: int v

e.fromQ, w

weighted edge v—w
vertex v

vertex w

weight of this edge

string representation

e.to();

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{

private final int v, w;

private final double weight;

public DirectedEdge(int v, int w, double weight)
{

this.v = v;

this.w = w;

this.weight = weight;
1

public int from() A

{ return v; }

public int to() e

{ return w; }

public int weight()
{ return weight; }

|

from() and to() replace
either() and other()

Edge-weighted digraph API

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)

void addEdge(DirectedEdge e)
Iterable<DirectedEdge> adj(int v)

int VO

edge-weighted digraph with V vertices

add weighted directed edge e
edges adjacent from v

number of vertices

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

public class EdgeWeightedDigraph
{

private final int V;

private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph(int V)
{
this.V = V;

adj = (Bag<DirectedEdge>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<DirectedEdge>(Q);

}

public void addEdge(DirectedEdge e)
{

int v = e.from(Q);
adj[v].add(e);
}

public Iterable<DirectedEdge> adj(int v)

{ return adj[v]; }

add edge e = v—w to
— , X)
only v's adjacency list

Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt

v
~

N

OO WONRENOOVINUVIAWU
AP OONNWWNARAREUNNDUV
OO OO OO0 ODOODOOOOOO0O

1z
15 <

.35
.35
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

~lo]2].26}{0]4].38]

bl

~2]7].34]

<Gl

Bag objects

reference to a
DirectedEdge

object

~a]7].374]5].35]

N OO v AW N RO

~>[s5]1].32~5][7].285][4].35]

~l6]4].93}~{6]0][.58}6]2].40]

AN

~[7]3].39+7]5].28]

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class

SP

double

Iterable <DirectedEdge>

SP(EdgeWeightedDigraph G, 1int s)

distTo(int v)

pathTo(int v)

shortest paths from s in graph G
length of shortest path from s to v

shortest path from s to v

4.4 SHORTEST PATHS

» shortest-paths properties

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
* distTo[v] is length of shortest path from s to v.
* edgeTo[v] is last edge on shortest path from s to v.

public double distTo(int v)
{ return distTo[v]; 1}

public Iterable<DirectedEdge> pathTo(int v)

{
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);
return path;
}

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest-paths tree (SPT) solution exists. Why?
Consequence. Can represent the SPT with two vertex-indexed arrays:

* distTo[v] is length of shortest path from s to v.
* edgeTo[v] is last edge on shortest path from s to v.

edgeTo[] distTo[]

@ 0 null 0
e 1| 5-»1 1.05
2l 0->2 0.26
o o 3| 7->3 0.97
0 4| 0->4 0.38
5[4-55 0.73
o @ 6| 3->6 1.49
71 257 0.60

shortest-paths tree from 0 parent-link representation

Edge relaxation

Relax edge e = v—w.
« distTo[v] is length of shortest known path from s to v.
o distTo[w] is length of shortest known path from s to w.
» edgeTo[w] is last edge on shortest known path from s to w.
* If e=v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

v—w successfully relaxes

O——R "
2

1
black edges %‘
are in edgeTo[]

\
@ 72 4.4

Edge relaxation

Relax edge ¢ = v—w.

distTo[v] is length of shortest known path from s to v.

distTo[w] is length of shortest known path from s to w.

edgeTo[w] is last edge on shortest known path from s to w.

* If e=v—w gives shorter path to w through v,

Shortest-paths optimality conditions

update both distTo[w] and edgeTo[w].

private void relax(DirectedEdge e)

{

int v = e.fromQ), w = e.to();
> distTo[v] + e.weight())

if (distTo[w]
{
distTo[w]
edgeTo[w]

= distTo[v] + e.weight(Q);

€;

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

Pf.

distTo[s] = 0.

For each vertex v, distTo[v] is the length of some path from s to v.

For each edge e =v—w, distTo[w] < distTo[v] + e.weight().

= [sufficient]

Suppose that s=v—=vi—=wn— ...

Then, 44 stTo[vi] <

distTo[v2] <

distTo[vk] <

distTo[vol
distTo[vi]

— . =w is a shortest path from s to w.

+ e1.weight()
ej = ith edge on shortest

+ €.wel ght() path from s to w

distTo[vk-1] + ek.weight()

Add inequalities; simplify; and substitute distTo[ve] = distTo[s] = 0:

distTo[w] = distTo[vk] < ei.weight() + e2.weight() + .. + ex.weight()

\ weight of some
path from s to w

weight of shortest path from s to w

Thus, distTo[w] is the weight of shortest pathtow. =

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:
e distTo[s] =0.
» For each vertex v, distTo[v] is the length of some path from s to v.
* For each edge e=v—w, distTo[w] < distTo[v] + e.weight().

Pf. < [necessary]
» Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.
» Then, e gives a path from s to w (through v) of length less than distTo[w].

Q-\,O/G{“

W 7.2 «—— distTo[w]

Generic shortest-paths algorithm

<«—— distTo[v]

Generic algorithm (to compute a SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

« distTo[v] is always the length of a simple path from s to v.

« Each successful relaxation decreases distTo[v] for some v.

e distTo[v] can decrease at most a finite number of times. =

20

Generic shortest-paths algorithm Shortest paths: quiz 1

Let e = v—w be an edge with weight 17.0. Suppose that distTo[v] = « and
Generic algorithm (to compute a SPT from s) distTo[w] = 15.0. Which is the value of distTo[w] after calling relax(e)?

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

A. The program will throw a java.lang.RuntimeException.
Repeat until optimality conditions are satisfied:
- Relax any edge. B. 15.0
C. 17.0
D. +o
.. . . . E. [Idon't know.
Efficient implementations. How to choose which edge to relax? on tinow
.. 0 . . . 0 <«—— distTo[Vv]
Ex 1. Dijkstra's algorithm (nonnegative weights). O O G{
Ex 2. Topological sort algorithm (no directed cycles). 17.0

Ex 3. Bellman-Ford algorithm (no negative cycles). ®\ \
W@ 15.0 «—— distTo[w]

Edsger W. Dijkstra: select quotes

21

“ Do only what only you can do.”

“The use of COBOL cripples the mind; its teaching should,

therefore, be regarded as a criminal offence. ”

4.4 SHORTEST PATHS

“It is practically impossible to teach good programming to

h g
Edsger W. Dijkstra
Turing award 1972

students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration. ”

Al gor ithms » Dijkstra's algorithm

“ APL is a mistake, carried through to perfection. It is the

language of the future for the programming techniques
ROBERT SEDGEWICK | KEVIN WAYNE . . . I
of the past: it creates a new generation of coding bums.
http://algs4.cs.princeton.edu
'O ENp C8 ' 0 (3=T) v Ma2 =T <D+ (VD" M, (VO C M, (V,OV)D'(V, V 118" c M’

http://catpad.net/michael/apl

Edsger W. Dijkstra: select quotes Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s
- " (non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges adjacent from that vertex.

- 0—1 5.0
‘Object -orienteq] " e 0—4 9.0

is an .exc.ptionalf;°g::'ﬂ.l:ng 5 / — .
:h.‘lch could only hav: Y 4 12 07 8.0
wsintind tn il . @ s 12 120
. JeX Dijkstra 8 — \ 1-3 15.0
‘ Q7 7 —> 2 1-7 4.0
11 2—6 11.0

5 \
iy 3-6 9.0
{ g — 13 4-5 4.0
v \ 46 20.0
(4/ 20 =@ 4—-7 5.0
14

L 5-2 1.0
5-6 13.0
an edge-weighted digraph 755 0
7-2 7.0

25

Dijkstra's algorithm demo Dijkstra's algorithm visualization

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges adjacent from that vertex.

O (%)

\% distTo[] edgeTo[]
0 0.0 =
0 1 5.0 0—1
2 14.0 52
@ 3 17.0 2—3
4 9.0 0—4
5 13.0 45
6 25.0 2—6 '<
v 7 8.0 0—7

shortest-paths tree from vertex s

27

Dijkstra's algorithm visualization

Dijkstra's algorithm: Java implementation

public class DijkstraSP

{

private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP(EdgeWeightedDigraph G, int s)
{

edgeTo new DirectedEdge[G.V(Q];

distTo new double[G.V(];

pg = new IndexMinPQ<Double>(G.V(Q));

for (int v = 0; v < G.VQ; v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;

pg.insert(s, 0.0);
while (!pqg.isEmpty())

{
int v = pg.delMin();
for (DirectedEdge e : G.adj(v))
relax(e);
3

relax vertices in order
of distance from s

29

31

Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted
digraph with nonnegative weights.

Pf.
* Each edge e = v—w is relaxed exactly once (when vertex v is relaxed),
leaving distTo[w] < distTo[v] + e.weight().
 Inequality holds until algorithm terminates because:
— distTo[w] cannot increase «—— distTo[] values are monotone decreasing

— distTo[v] will not Change <«<—— we choose lowest distTo[] value at each step
(and edge weights are nonnegative)

when relaxing v

—©

if u has not yet been relaxed,

then distTo[u] = distTo[v]

« Thus, upon termination, shortest-paths optimality conditions hold. =

Dijkstra's algorithm: Java implementation

private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to(Q);
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] distTo[v] + e.weight();
edgeTo[w] e;
if (pg.contains(w)) pqg.decreaseKey(w, distTo[w]); L update PQ
else pg.insert (w, distTo[w]);

30

22

Shortest paths: quiz 2

What is the order of growth of the running time of Dijkstra's algorithm
when using a binary heap for the priority queue?

A. V+E

B. VlogE

C. ElogV

D. FElogE

E. [Idon't know.

33

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?
« Prim's algorithm is essentially the same algorithm.
« Both are in a family of algorithms that compute a spanning tree.

Main distinction: rule used to choose next vertex for the tree.
« Prim: Closest vertex to the tree (via an undirected edge).
« Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

35

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V delete-min, E decrease-key.

1 \% 1 V2

unordered array

binary heap log V log V log V ElogV
d-way heap loga V dlogqV logqa V ElogewvV
Fibonacci heap 1 log V¥ 17 E+VlogV
+ amortized
Bottom line.

« Array implementation optimal for dense graphs.

« Binary heap much faster for sparse graphs.

» 4-way heap worth the trouble in performance-critical situations.
» Fibonacci heap best in theory, but not worth implementing.

34

4.4 SHORTEST PATHS

Algorithms
» edge-weighted DAGs

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.
Is it easier to find shortest paths than in a general digraph?

A. Yes!

37

Acyclic shortest paths demo

« Consider vertices in topological order.
« Relax all edges adjacent from that vertex.

01 4 75 2 3 6
@ @ \% distTo[] edgeTol[]
0 0.0 -
s (O 1 5.0 0—1
2 14.0 52
@ 3 17.0 2-3
4 9.0 0—4
5 13.0 4—5
6 25.0 2—6
v 7 8.0 0—7

shortest-paths tree from vertex s

39

Acyclic shortest paths demo

« Consider vertices in topological order. @
« Relax all edges adjacent from that vertex.

: T 3 0-1 5
_ > 0—-4 9
5 i / 0-7 8
. <®< 12 3 1-2 12
8 l \ 1-3 15
\Qi s 2 9 1-7 4
11 2—6 11
5 \@/\ 3-6 9
4 — = \ 45 4
v \ 4—-6 20
<4/ 20 :@ 4-7 5
5-2 1
5-6 13

an edge-weighted DAG 7—5
7-2 7

Shortest paths: quiz 3

O O O O O O O O O O o o o o o o

What is the order of growth of the running time of the topological sort
algorithm for computing shortest paths in an edge-weighted DAG?

AV

B. E

C. V+E

D. VlogE

E. Idon't know.

38

40

Shortest paths in edge-weighted DAGs Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes the SPT in any edge-

weighted DAG. \ public class AcyclicSP
edge weights {
can be negative! private DirectedEdge[] edgeTo;
Pf. private double[] distTo;
« Each edge e =v—w is relaxed exactly once (when vertex v is relaxed), public AcyclicSP(EdgeWeightedDigraph G, int s)
leaving distTo[w] < distTo[v] + e.weight(). { _
)) j) edgeTo = new DirectedEdge[G.V(Q];
 Inequality holds until algorithm terminates because: distTo = new double[G.V()1;
- i i distTo[] values are monotone decreasin
distTo[w] cannot increase <«—— distTo[] valu Ing For (e e OF ¥ = GOE)
— distTo[v] will not Change <—— because of topological order, no vertex pointing to v distTo[v] = Double.POSITIVE_INFINITY;
will be relaxed after v is relaxed distTo[s] = 0.0;
when relaxing v Topological topological = new Topological(G); topological order
@_)® for (int v : topological.order())
for (DirectedEdge e : G.adj(v))
u already relaxed relax(e);
}
}

« Thus, upon termination, shortest-paths optimality conditions hold. =

41 42

Content-aware resizing Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for Seam carving. [Avidan and Shamir] Resize an image without distortion for

display on cell phones and web browsers. display on cell phones and web browsers.

[T -ioixi

‘Tmage Resizing

Shai Avidan e s o o
Mitsubishi Electric Research Lab

Ariel Shamir Yorus
The interdisciplinary Center & MERL)

In the wild. Photoshop, Imagemagick, GIMP, ...

http:/ /www.youtube.com/watch?v=vIFCV2spKtg
43 44

Content-aware resizing

To find vertical seam:
« Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
» Weight of pixel = "energy function" of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To remove vertical seam:
» Delete pixels on seam (one in each row).

45

47

Content-aware resizing

To find vertical seam:
« Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = "energy function" of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

seam

Content-aware resizing

To remove vertical seam:
» Delete pixels on seam (one in each row).

46

48

SHORTEST PATH VARIANTS IN A DIGRAPH

LONGEST PATH IN A DAG

Q1. How to model vertex weights (along with edge weights)?
~., - 1 7 ~. - 7
PO SO —~@C i~
/ € \A / @ \A
Q2. How to model multiple sources and sinks?

y 4 '}).

XXX
XXX
'\\L//’

49

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
« Negate all weights.
equivalent: reverse direction of inequality in relax()

» Find shortest paths.
« Negate weights in result.

longest paths input shortest paths input
5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37
5->7 0.28 5->7 -0.28
5->1 0.32 5->1 -0.32
4->0 0.38 4->0 -0.38
0->2 0.26 0->2 -0.26
3->7 0.39 3->7 -0.39
1->3 0.29 1->3 -0.29
7->2 0.34 7->2 -0.34
6->2 0.40 6->2 -0.40
3->6 0.52 3->6 -0.52
6->0 0.58 6->0 -0.58
6->4 0.93 6->4 -0.93

longest path from 5 to 0
(0.32 +0.29 + 0.52 + 0.93 + 0.38 = 2.44)

Key point. Topological sort algorithm works even with negative weights.

51

Challenge. Given an edge-weight DAG, find the longest path from s to
Warning. Problem in digraphs is NP-COMPLETE.

longest paths input
5->4 0.35
4->7 0.37
5->7 0.28
5->1 0.32
4->0 0.38
0->2 0.26
3->7 0.39
1->3 0.29
7->2 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

longest path from 5 to 0
(0.32+0.29+ 0.52 + 0.93 + 0.38 = 2.44)

50

Longest paths in edge-weighted DAGs: application

job duration

Parallel job scheduling. Given a set of jobs with durations and precedence
constraints, schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the constraints.

must t‘omp[etc

before
0 41.0 17 9
1 51.0 2
2 50.0
3 36.0
4 38.0
5 45.0 !
6 21.0 3 8 7 :
7 32.0 3 8 0 2 6 8 2
8 32.0 2 > 3
9 29.0 4 6 (‘) 4‘1 7‘0 9‘1 12‘3 17‘3

Parallel job scheduling solution

52

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

« Source and sink vertices.

« Two vertices (begin and end) for each job. G

duration

must mm/)lm

before

» Three edges for each job.
— begin to end (weighted by duration)
— source to begin (0 weight)
- end to sink (0 weight)

0
1
2
3
4
5
6
7
« One edge for each precedence constraint (0 weight). §

41.0
51.0
50.0
36.
38.
45
21.
32.
32.
29.

oo ooooo

job stmr /ubﬁmsh precedence constraint
/ (zero weight)
: 41 /@_>
dumno” \ O = @ = —
21)< 36
O Ons ®
29 4
AN : 38
: 45

4.4 SHORTEST PATHS

17 9
2

AN W W

Algorithms

» negative weights

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

53

Critical path method

CPM. Use longest path from the source to schedule each job.

Parallel job scheduling solution

‘b@ 51

>

duration

\@—» /'@

\ critical path \

O

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

O——>0

Dijkstra selects the vertices in the order 0, 3, 2, 1
But shortest path from 0 to 3 is 0—=1—-2—3.

Re-weighting. Add a constant to every edge weight doesn’t work.

O 10

11 @

Conclusion. Need a different algorithm.

Adding 8 to each edge weight changes the
shortest path from 0—1—2—3 to 0—3.

54

56

Negative cycles

A negative cycle is a directed cycle whose sum of edge weights is negative.

digraph
4->5
5->4
4->7
5->7
7->5
5->1
0->4
0->2
7->3
1->3
2->7
6->2
3->6
6->0
6->4

[eNeNeoNoNolloNeNolloNoNoNolNoeNe)

.35
.66
.37
.28
.28

32

.38
.26
.39
0229
.34
.40
.52
.58
.93

S

negative cycle (-0.66 + 0.37 + 0.28)

O—Q)
5

5->4->7->5

shortest path from 0 to 6

0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

®,

an edge-weighted digraph

12.
15.

11.

20.

13.

O O ©O O O © O O O © o o o o o o

57

59

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

for (int i = 0; i < G.VQ; i++)
for (int v = 0; v < G.VO; v++)

for (DirectedEdge e :

relax(e);

Bellman-Ford algorithm demo

G.adj(v))

‘ <«——— pass i (relax each edge)

Repeat V times: relax all E edges.

v

shortest-paths tree from vertex s

Y distTo[] edgeTol[]
0 0.0 =

1 5.0 0—-1

2 14.0 5-2

3 17.0 2—3

4 9.0 0—4

5 13.0 4-5

6 25.0 2—6

7 8.0 0—7

58

60

Bellman-Ford algorithm: visualization

"

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i,
no need to relax any edge adjacent from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

!

be careful to keep at most one copy
of each vertex on queue (why?)

Overall effect.
* The running time is still proportional to E x V in worst case.
« But much faster than that in practice.

61

63

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

Proposition. Bellman-Ford computes SPT in any edge-weighted digraph
with no negative cycles in time proportional to E x V.

Pf idea. After pass i, found shortest path to each vertex v for which
the shortest path from s to v contains i edges (or fewer).

Single source shortest-paths implementation: cost summary

algorithm restriction typical case worst case extra space

t I I " no directed
opological sor cycles
Dijkstra no negative
; ElogV ElogV \%
(binary heap) weights 0g og
Bellman-Ford EV EV Vv
no negative
_ cycles
Bellman-Ford BV £y y

(queue-based)

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

62

64

Finding a negative cycle Finding a negative cycle

Negative cycle. Add two method to the API for SP. Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop,
updating distTo[] and edgeTo[] entries of vertices in the cycle.
boolean hasNegativeCycle() is there a negative cycle?
Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

()

©
v
©
v
(—O

digraph
4->5 0. edgeTo[v]
5->4 -0. > »
4-57 0.37 © ” Q
5->7 0.28 @j ©.
7->5 0.28 '\@ ©)
5->1 0.32 ; 0
0->4 0.38 . _ _
0->2 0.26 O (6) Proposition. If Bellman-Ford updates any vertex v in pass V, there exists
7->3 0.39 : . :
1_; 0.29 a negative cycle (and can trace edgeTo[v] entries back to find one).
2->7 0.34 negative cycle (-0.66 + 0.37 + 0.28)
6->2 0.40 S a7t . .
z‘>g 8'3; In practice. Check for negative cycles more frequently.
-> .
6->4 0.93

65 66

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

(0741) 0.657 1.061 1.011
1.350 1 0.888 1.433
1.521 1.126 1 1.614 1.538
0.943 0.698 0.620 1 0.953

0.732 0.650 1.049 1

Ex. $1,000 = 741 Euros = 1,012.206 Canadian dollars = $1,007.14497.

T

1000 x 0.741 x 1.366 x 0.995 = 1007.14497

67

Negative cycle application: arbitrage detection

Currency exchange graph.
» Vertex = currency.
« Edge = transaction, with weight equal to exchange rate.
e Find a directed cycle whose product of edge weights is > 1.

0.741 * 1.366 * .995 = 1.00714497

N

Challenge. Express as a negative cycle detection problem.

69

Shortest paths summary

Nonnegative weights.
« Arises in many application.
» Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
» Arise in some applications.
« Topological sort algorithm is linear time.
« Edge weights can be negative.

Negative weights and negative cycles.
« Arise in some applications.
« Bellman-Ford is quadratic in worst case.
 If no negative cycles, can find shortest paths via Bellman-Ford.
« If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

71

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logarithms.
« Set weight of edge v—w to —in (exchange rate from currency v to w).
* Multiplication turns to addition; > 1 turns to <0.
e Find a directed cycle whose sum of edge weights is <0 (nhegative cycle).

-Tn(.741) -1n(1.366) -1n(.995)

A

.2998 - .3119 + .0050 = -.0071 \

replace each

weight w
with ln(w\

Remark. Fastest algorithm is extraordinarily valuable!

70

