ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

Premature optimization

* Programmers waste enormous amounts of time thinking about,
or worrying about, the speed of noncritical parts of their programs,
and these attempts at efficiency actually have a strong negative

3.4 HASH TABLES

impact when debugging and maintenance are considered.

» hash functions We should forget about small efficiencies, say about 97% of the time:

o premature optimization is the root of all evil.
» separate chaining

13

» linear Probmg Yet we should not pass up our opportunities in that critical 3%.

Algorithms

OURTH EDITION

» context

ROBERT SEDGEWICK | KEVIN WAYNE

THE CL
EXTENDE

http://algs4.cs.princeton.edu

The Art of The Art of The Art of The Art of
Computer Computer Computer Computer

Programming Programming Programming Programming

DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH

Symbol table implementations: summary Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

guarantee average case
implementation order7ed key i)) 0
0ps? interface Hash function. Method for computing array index from key.
search insert delete search hit insert delete 1
. hash("it") = 3 2
sequential search
(unordered list) b N N N N N equalsO \ 3 "qt"
?
o 4
binary search i "
(ordered array) log N 4 b log N b N = compareTo () Issues. hash("times") = 3 / 5
Computing the hash function.
BST N N N log N log N VN v compareTo() « Equality test: Method for checking whether two keys are equal.
Collision resolution: Algorithm and data structure
red-black BST log N log N log N log N log N log N v compareTo() to handle two keys that hash to the same array index.

Classic space-time tradeoff.

Q. Can we do better?
A. Yes, but with different access to the data.

» No space limitation: trivial hash function with key as index.
« No time limitation: trivial collision resolution with sequential search.
Space and time limitations: hashing (the real world).

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
 Efficiently computable.
« Each table index equally likely for each key.

\ thoroughly researched problem,
still problematic in practical applications

3.4 HASH TABLES

» hash functions

table
index

Ex. Social Security numbers.

Algorlthms e Bad: first three digits. <«— 573 =California, 574 = Alaska
(assigned in chronological order within geographic region)
« Better: last three digits.

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Practical challenge. Need different approach for each key type.

Hash tables: quiz 1 Java’s hash code conventions

Which of the following would be a good hash function for U.S. phone All Java classes inherit a method hashCode(), which returns a 32-bit int.
numbers to integers between 0 and 999?

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

A. First three digits.
Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

B. Second three dlgltS (609) 867-5309

X y
C. Last three digits. | I
D. Either B or C. - -
E. I don't know. ¢ ¢

X.hashCode () y.hashCode ()

Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

Implementing hash code: integers, booleans, and doubles

Java library implementations

public final class Integer public final class Double
{ {

private final int value; private final double value;

public int hashCode() public int hashCode()
{ return value; } {
} Tong bits = doubleTolLongBits(value);
return (int) (bits A (bits >>> 32));

public final class Boolean
{

private final boolean val e convert to IEEE 64-bit representation;

xor most significant 32-bits
with least significant 32-bits
public int hashCode()
{ Warning: -0.0 and +0.0 have different hash codes
if (value) return 1231;
else return 1237;

Implementing hash code: strings

Performance optimization.
e Cache the hash value in an instance variable.
o Return cached value.

public final class String

' private int hash = 0; <«<——— cache of hash code
private final char[] s;
public int hashCode()
{
int h = hash; <«——— return cached value
if (h '= 0) return h;
for (int i = 0; i < length(Q); i++)
h =s[i] + (31 * h);
hash = h; <«<——— store cache of hash code
return h;
}
1

Q. What If hashcode() Of String is O? «<—— hashCode() of "pollinating sandboxes" is 0

Implementing hash code: strings

Treat string of length L as L-digit, base-31 number:
h = s[0] 3150 + ...+ s[L-3] - 312 + s[L—-2]" 31! + s[L—1]-31°

pubTlic final class String

{
private final char[] s;
3 'a' 97
public int hashCode() 'b' 98
{ Ll Al
int hash = 0; c 99
for (int i = 0; i < Tength(Q); i++)
hash = s[i] + (31 * hash);
return hash;
}
} Java library implementation

Horner's method: only L multiplies/adds to hash string of length L.

String s = "call";
s.hashCode(); <«—— 3045982 =199-313+97-312+108-31' + 108-310
=108 +31-(108+31-(97 + 31 -(99)))

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>
{

private final String who;

private final Date when;

private final double amount;

public Transaction(String who, Date when, double amount)
{ /* as before */ }

public boolean equals(Object y)
{ /* as before */ }

public int hashCode()

{ —

int hash = 17;

nonzero constant

hash = 31*hash + who.hashCode(); < for reference types,
hash = 31*hash + when.hashCode(); < use hashCode ()
hash = 31*hash + ((Double) amount).hashCode(); <«—— +— for primitive types,
return hash; use hashCode ()
} of wrapper type
} typically a small prime

Hash code design

"Standard" recipe for user-defined types.
e Combine each significant field using the 31x +y rule.

If field is a primitive type, use wrapper type hashCode().
If field is nu11, use 0.

If field is a reference type, use hashCode(). «<—— applies rule recursively

If field is an array, apply to each entry. <«<—— oruse Arrays.deepHashCode ()

In practice. Recipe above works reasonably well; used in Java libraries.
In theory. Keys are bitstring; "universal" family of hash functions exist.

awkward in Java since only
one (deterministic) hashCode ()

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Modular hashing

Hash code. An int between -23t and 231 - 1.
Hash function. An int between 0 and M - 1 (for use as array index).

typically a prime or power of 2

private int hash(Key key)

X
v
{ return key.hashCode() % M; 1}
bug IIIIIII
¥

x.hashCode()

m
v

hash(x)

private int hash(Key key)
{ return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

\ hashCode() of "polygenelubricants" is —23!

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

correct

Hash tables: quiz 1

Which of the following is an effective way to map a hashable key
to an integer between 0 and M-1 ?

A. private int hash(Key key)
{ return key.hashCode() % M; 1}

X
v
v
x.hashCode()
v
v

hash(x)

B. private int hash(Key key)
{ return Math.abs(key.hashCode()) % M; }

C. Both A and B.
D. Neither A nor B.

E. I don't know.

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

[J

[] [J

[] (] o0 [(BN J []
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Birthday problem. Expect two balls in the same bin after ~ /M / 2 tosses.
Coupon collector. Expect every bin has =1 ball after ~ M In M tosses.

Load balancing. After M tosses, expect most loaded bin has
~InM/Inln M balls.

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

Collisions

Collision. Two distinct keys hashing to same index.
unless you have a ridiculous

« Birthday problem = can't avoid collisions. «——)
(quadratic) amount of memory

» Coupon collector = not too much wasted space.

e Load balancing = no index gets too many collisions.

hash("it") = 3

\ 3 DGl
” 4
hash("times") = 3/ 5

Challenge. Deal with collisions efficiently.

3.4 HASH TABLES

» separate chaining

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Separate-chaining symbol table

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
e Hash: map key to integer i between 0 and M - 1.
« Insert: put at front of i chain (if not already in chain).
» Search: sequential search in i chain.

put(L, 11)

hash(L) = 3
separate-chaining hash table (M = 4) ash®

I e BN

stll

20

Separate-chaining symbol table

Use an array of M <N linked lists. [H. P. Luhn, IBM 1953]

e Hash: map key to integer i between 0 and M - 1.

« Insert: put at front of it chain (if not already in chain).

e Search: sequential search in it chain.

get(E)

hash(E) = 1

separate-chaining hash table (M = 4)
e —te]]
st[]/¢
L A= e Ot
In e nEEEE

[[([]

Separate-chaining symbol table: Java implementation

public class SeparateChainingHashST<Key, Value>

{
private int M = 97; // number of chains
private Node[] st = new Node[M]; // array of chains

private static class Node
{
private Object key;
private Object val;
private Node next;

}

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

public void put(Key key, Value val) {
int i = hash(key);
for (Node x = st[i]; x != null; X = x.next)
if (key.equals(x.key)) { x.val val; return; }
st[i] = new Node(key, val, st[i]);

Separate-chaining symbol table: Java implementation

public class SeparateChainingHashST<Key, Value>
{
private int M = 97; // number of chains | array doubling and
private Node[] st = new Node[M]; // array of chains halving code omitted
private static class Node
{
private Object key; <«—— no generic array creation
private Object val; <—— (declare key and value of type Object)
private Node next;
}
private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }
public Value get(Key key) {
int i = hash(key);
for (Node x = st[i]; x != null; x = x.next)
if (key.equals(x.key)) return (Value) x.val;
return null;
}
}
21 22

Analysis of separate chaining

Proposition. Under uniform hashing assumption, prob. that the number of
keys in a list is within a constant factor of N/ M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

10,.12511...
_—’/////’<<i\\\:;-:___________J%
-0
[[| [
0 10 20 30

Binomial distribution (N =104, M =103, o = 10)

equals() and hashCode()

Consequence. Number of probes for search/insert is proportional to N/ M.

« Mtoo large = too many empty chains. T

M times faster than

e M too small = chains too long. sequential search

» Typical choice: M~ 4 N = constant-time ops.

28] 24

Resizing in a separate-chaining hash table Deletion in a separate-chaining hash table

Goal. Average length of list N/ M = constant. Q. How to delete a key (and its associated value)?
* Double size of array M when N/ M = 8; A. Easy: need to consider only chain containing key.
halve size of array M when N/ M < 2.

« Note: need to rehash all keys when resizing. «— x.hashCode() does not change;
but hash(x) can change

before deleting C after deleting C

before resizing (N/M = 8)

26

Symbol table implementations: summary

guarantee average case
ordered key

implementation .
ops? interface
search insert delete search hit insert delete

sequential search N N N N N N equals() 3.4 HASH TABI-ES

(unordered list)

binary search

(ordered array) log N N N log N N N v compareTo()
BST N N N log N log N VN 4 compareTo() .)
Al th » linear probing
gor1 thms
red-black BST log N log N log N log N log N log N v compareTo()
haini N N N 1% 1 * 1* equals() ROBERT SEDGEWICK | KEVIN WAYNE
separate chaining hashCode () http://algs4.cs.princeton.edu

* under uniform hashing assumption

27

Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

» Maintain keys and values in two parallel arrays.

« When a new key collides, find next empty slot, and put it there.

linear-probing hash table (M = 16, N =10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
keys[] P M A C H L E R X
put(K, 14) K
hash(K) = 7 14
vals[]
29
Linear-probing symbol table: Java implementation
public class LinearProbingHashST<Key, Value>
{
private int M = 30001; . .
private Value[] vals = (Value[]) new Object[M]; — array doubling an

private Key[] keys = (Key[]) new Object[M];

private int hash(Key key) { /* as before */ }

private void put(Key key, Value val) { /* next slide */ }

public Value get(Key key)
{
for (int i = hash(key); keys[i]
if (key.equals(keys[i]))
return vals[i];
return null;

= null; i = Gi+1) % M)

—

halving code omitted

sequential search
in chain i

31

Linear-probing hash table summary

Hash. Map key to integer i between 0 and M - 1.
Insert. Put at table index i if free; if not try i + 1, i + 2, etc.

Search. Search table index i; if occupied but no match, try i + 1, i + 2, etc.

Note. Array size M must be greater than number of key-value pairs N.

keys[] P M A C S H L E

M= 16

O

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value>

{
private int M = 30001;
private Value[] vals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* as before */ }
private Value get(Key key) { /* prev slide */ }
public void put(Key key, Value val)
{
int i;
for (i = hash(key); keys[i] != null; i = (i+1) % M)
if (keys[i].equals(key))
break;
keys[i] = key;
vals[i] = val;
}
}

—

sequential search
in chain i

30

22

Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

L v o () - [eJelrlcl) (I« I

33

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes
in a linear probing hash table of size M that contains N = a M keys is:

(a) (o)

search hit search miss / insert

Pf.

51" ADDRESSING. " "D, Knwth, 7/22/63
| . Istroducvion and TeTinitidns. Lypen mddvessing 1s a videly-used technique
for keeping "symbol tables,” The nethod was first used in 195b by Samuel, Awdahl, .
and Bochme in an assembly program {or the ILM T0l. An extensive discussion of
the method was given by Peterson in 1957 {1], and frequent references have been
made’ to it ever since (&.g, Schay and Spruth {2], Iversen [3}). However, the
tloing characteristics have apparently never besn exectly established, and indeed
the anthor has heard reports of seversl reputable mathematiciana who falled %o
find the solution after some trial. Therefore it is the purpsse of this note to
indicste one way by which the soluuion can be obtained,

Parameters.
« Mtoo large = too many empty array entries.

e Mtoo small = search time blows up.
probes for search hit is about 3/2
probes for search miss is about 5/2

* Typical choice: a = N/M ~ 1.

35

Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i: if space i is taken, try i+ 1,i+2, etc.

Q. What is mean displacement of a car?

displacement = 3

o > I_gk o G i;q;.,;\ 5 L | = P — s | =

Half-full. With M /2 cars, mean displacement is ~ 5/2.
Full. With M cars, mean displacement is ~ /m M/ 8.

Key insight. Cannot afford to let linear-probing hash table get too full.

Resizing in a linear-probing hash table

Goal. Average length of list N/ M < 1.
* Double size of array M when N/ M > 1.
* Halve size of array M when N/ M < .
« Need to rehash all keys when resizing.

before resizing

keys[] E S R A

vals[]

after resizing

keys[] A S E R

vals[]

34

36

Deletion in a linear-probing hash table ST implementations: summary

Q. How to delete a key (and its associated value)?

A. Requires some care: can't just delete array entries. guarantee dverage case -

implementation .
P interface
search insert delete search hit insert delete

sequential search

. N N N N N N equals(Q)
before deleting S (unordered list)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .
Pty i log N N N log N N N v compareTo()
keys[] P M A C S H L E R X (ordered array)
vals[]
BST N N N log N log N VN v compareTo()
d-black BST log N log N log N log N log N log N v compareTo()
doesn't work, e.g., if hash(H) = 4 re ac 08 08 08 e o8 0g
after deleting S ?
. .) equalsQ
o 1 2 3 4 5 6/ 7 8 9 10 11 12 13 14 15 separate chaining N N N 1* L= 1* hashCode ()
keys[] P M A C H L E R X
]
linear probing N N N 1 * 1% 1* equalsQ)
vals[] hashCode ()

* under uniform hashing assumption
37 38

3-SUM (REVISITED)

3-SuM. Given N distinct integers, find three such thata+ b +c¢=0.
Goal. N2 expected time case, N extra space.

3.4 HASH TABLES

Algorithms

» context

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

39

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker, HFT, ...
A. Surprising situations: denial-of-service attacks.

st[]

malicious adversary learns your hash function

(e.g., by reading Java API) and causes a big pile-up
in single slot that grinds performance to a halt

N o v W N = O

Real-world exploits. [Crosby-Wallach 2003]
» Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.
» Perl 5.8.0: insert carefully chosen strings into associative array.
o Linux 2.4.20 kernel: save files with carefully chosen names.

41

Algorithmic complexity attack on Java

Goal. Find family of strings with the same hashCode().
Solution. The base-31 hash code is part of Java's String API.

"Aa" 2112 "AaAaAaAa" -540425984 "BBAaAaAa" -540425984
"BB" 2112 "AaAaAaBB" -540425984 "BBAaAaBB" -540425984
"AaAaBBAa" -540425984 "BBAaBBAa" -540425984
"AaAaBBBB" -540425984 "BBAaBBBB" -540425984
"AaBBAaAa" -540425984 "BBBBAaAa" -540425984
"AaBBAaBB" -540425984 "BBBBAaBB" -540425984
"AaBBBBAa" -540425984 "BBBBBBAa" -540425984
"AaBBBBBB" -540425984 "BBBBBBBB" -540425984

2N strings of length 2N that hash to same value!

43

War story: algorithmic complexity attacks

A Java bug report.

Jan Lieskovsky 2011-11-01 10:13:47 EDT Description

Julian Wdlde and Alexander Klink reported that the String.hashCode() hash function is not sufficiently collision
resistant. hashCode() value is used in the implementations of HashMap and Hashtable classes:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of HashMap
or Hashtable by changing hash table operations complexity from an expected/average O(l) to the worst case O(n).
Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle
techniques.

This problem can be used to start a(denial of service attack)against Java applications that use untrusted inputs
as HashMap or Hashtable keys. An example of such application is web application server (such as tomcat, see bug
#75652%) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote
attack could use that to make JVM use excessive amount of CPU time by sending a POST request with large amount
of parameters which hash to the same value.

This problem is similar to the issue that was previously reported for and fixed
in e.g. perl:
http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_ UsenixSec2003.pdf

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired
value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-T, SHA-2, WHIRLPOOL, RIPEMD-160,
— v

known to be insecure

String password = args[0];
MessageDigest shal = MessageDigest.getInstance("SHAL1");
byte[] bytes = shal.digest(password);

/* prints bytes as hex string */

Applications. Crypto, message digests, passwords, Bitcoin,
Caveat. Too expensive for use in ST implementations.

42

44

Separate chaining vs. linear probing

Separate chaining.
« Performance degrades gracefully.
» Clustering less sensitive to poorly-designed hash function.

Linear probing.

« Less wasted space. [Als{E[]
» Better cache performance.
st[] null
0
1
2 X7 H{s 0]
3
4
[L 1P]i0]
Mo H s [R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
keys[] | P | M A|lC|S | H|L E R | X

vals[]

45

Hash tables vs. balanced search trees

Hash tables.
» Simpler to code.
» No effective alternative for unordered keys.
« Faster for simple keys (a few arithmetic ops versus log N compares).
« Better system support in Java for String (e.g., cached hash code).

Balanced search trees.
« Stronger performance guarantee.
» Support for ordered ST operations.
» Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.
» Red-black BSTs: java.util.TreeMap, java.util.TreeSet.
o Hash tables: java.util.HashMap, java.util.IdentityHashMap.

I I

linear probing separate chaining

47

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [separate-chaining variant]
» Hash to two positions, insert key in shorter of the two chains.
» Reduces expected length of the longest chain to ~ IgIn N.

Double hashing. [linear-probing variant]
« Use linear probing, but skip a variable amount, not just 1 each time.
« Effectively eliminates clustering.
« Can allow table to become nearly full.
» More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]
» Hash key to two positions; insert key into either position; if occupied,
reinsert displaced key into its alternative position (and recur). A
« Constant worst-case time for search. ﬁg

46

