COS 226
Midterm Review
Spring 2015

Ananda Gunawardena

(guna)
guna@cs.princeton.edu

guna@princeton.edu

Time and location:

The midterm is during lecture on

— Wednesday, March 11 from 11-12:20pm.
The exam will start and end promptly, so please do arrive
on time.

The midterm room is either McCosh 10 or McDonnell A02,
depending on your precept date.

— Friday Precepts: McCosh 10.

— Thursday Precepts: McDonnell A02.

Failure to go to the right room can result in a serious
deduction on the exam. There will be no makeup exams
except under extraordinary circumstances, which must be
accompanied by the recommendation of a Dean.

Rules

* Closed book, closed note.

* You may bring one 8.5-by-11 sheet (one side)
with notes in your own handwriting to the
exam.

* No electronic devices (including calculators,
laptops, and cell phones).

Materials covered

* Algorithms, 4th edition, Sections 1.3-1.5,
Chapter 2, and Chapter 3.

* Lectures 1-10.

* Programming assignments 1—4.

concepts (so far) in a nutshell

Intro - Union Find Quick-union - Union-by-size /

Analysis of Algorithms Binary search -
Stacks and Queues Dijkstra 2-stack #~
Elementary Sorts Selection - Insertion - Shuffle /
Mergesort, , Merging /

Quicksort ./~ Partitioning - Quick-select 4

Priority Oueues‘/ Heap - Heapsort /
Elementary Symbol Tables - BSTs \/ BST ops - Inorder traversal =
Balanced Search Trees 2-3tree - Red-black BST
Hash Tables\/ Linear probing 7

List of algorithms and data structures:

quick-find quick-union weighted quick-union
resizing arrays linked lists stacks and queues
insertion sort selection sort Knuth shuffle
mergesort bottom-up mergesort

quicksort 3-way quicksort

binary heaps heapsert

sequential search binary search BSTs

2-3 trees left-leaning red-black BSTs

separate chaining linear probing

+ Recall as much as possible about each of the above topics
+ Write down up to 5 important things about each one

Analysis of Algorithms

Analysis of Algorithms

+ Estimate the performance of an algorithm
using

049,

— comparisons, arra
requiremen

Ay € T 2)
l

6rder of growth
7V accesses, exchanges, memory

— Performance measure basedl on some specific

inputs \J
o))

Amortized/ analysis
* Measure performance over a series

of operations
— Some good, few bad

&!’(\M—LC\') ;/<"J‘ er) .
I\MMSM(A(O {\))/“ X

('L

True or False
Tilde notation includes the coefficient of the highest order term.’

Tilde notation provides both an upper bound and a lower bound l/

on the growth of a function

. Big-Oh notation suppresses lower order terms, so it does not necessarily
aceurately describe the behavior of a function for small values of N.

Count operations
int count = 0;
for (int i = 0; i < N; i+4)
for (int k = j*1; k < N; k++)

for (int j = i+1; j < N; j++)
if (ali] + alj)®)alxl) counter

Suppose that it l>||«/pluxn‘un-\(liumh‘ gment when N = 1000. Usingt @
notation, formulate & iypothesis for the running time (in seconds) of the code fragme)
as a function of N.
A
I ‘ V\\ ~ 0.@__ ¥

More formally....

. . V) ~ 2N
+ tilda notation SR

shorthand for

notation provides example
Y% NZ
totic 10 N? lassify
Big Theta bl Q(N?) i
order of growth S N2+22Nlog N+ 3N algorithms
10 N2
100N |
Big Oh B(N?) and smaller O(N?) e
22ZNlogN+3N upper bounds
% N2
5ig O (N2 and | ama - apsion
S andlarger N*+22NlogN+ 3N lower bounds

N
) Z‘-‘LLL -1 LU‘ Y ﬁ(nf\)ﬁw
= A l‘®

Analysis of Algorithms
* Techniques: (43"4"

oY
— count operations——— _
—

— Derive mathematically

+ exploit the propert;; of the algorithm

« solve arecurrence formula to reach a closed form

solution.
« Obtain upper/lower bounds
e

Count operations

Example 1 %

for (int i = 1; 4 < N; i+8) { /
for Cint j j 3 (24

if (gén > genomes[j].lengch())
else br \ on
-
} 1 Yy er)
ISl

ln" b bn" 3o L Mﬂ-«h’iﬂ
AY) =evp

Count operations

Example 2

iat uniquecount = 0)]
e o S X Tin e #
-0
e (iQm ¢ 7/ s
int current / \J X
uniquecount + 3 .

int 3 =i 1i o \ %
1
V. kdl“@tnxrenh} P il ~
break; .
[0 \‘/' T ong

mmpares assignments | External
method calls

N n, @

Runtime complexity

This is a method of describing behavior of an algorithm using runtime
Observations. Runtime of an algorithm depends on many factors
including language, compiler, input size, memory, optimizations etc

int N = Integer.parseInt(args[0]);

String[] genomes = new String[N];

for (int 1 = 0; i < N; i++) {
In gfile = new In(“genomeFile” + i + “.txt");
genomes[i] = gfile.readString():

N Time (s)
The following runtimes were observed from ;‘ g iz
an algorithm thatreads a file of strings and . \
sort them using insertion sort. The runtime 4 0.19 v

0.41

analysis seems to suggest the algorithm is
linear. Is this correct?
v\

Important when counting

* Do not assume two nested loops always give
you n?
— Always read the code to see what it does

* When doubling or halving loop control
variable, it can lead to log N performance
— But analyze carefully

* Sometimes the sum of operations can be e

agj\xi@y an integral
AN
S f(n) © [f(n) z‘ .
-a[,
i

useful formulas

1172 1 TN, 'z‘:i ~ f" rir ~ a2

= £ 3!

,\‘ . i
42k +NE ;f" ~ [‘:],-k,,, ~ k_H'\'k+l
1412+ 13+ ...+ N, Z} ~ f lir = N

N N N Y e A
3-sum triple loop. SR DB S I / [f drdyde ~ %,\"‘
i

i=1 g kmj zm1 S ymz Sy

L+b st et

() -
j::u(%)"" = ﬁ = Ly

i 3

Mathematically speaking

» write recurrences for many of the standard
algorithms
— linear search

— merge sort = T(n n/2) +n
— quicksort = T(n) = T(n-i-1) + T(i) + n
— insertion sort = T(n) =i + T(n-i-1)

* solve them using many of the techniques
discussed

ase like T(0)=1o0r0
1+ (1+T(n-2)) e

T(n)=1+T(n-1)=

counting memory

+ standard data types (int, boaol, double)
+ object overhead — 16 bytes
+ array overhead — 24 hytes
+ references — 8 hytes
Inner class reference — 8 bytes
—

public class TwoThreqlree<Key extends Comparable<Key>, Value> {
private Nade

plvate class Node { o q
private int count; / \
private Key keyl, key2; -
private Value valuel, value2;

// subtree count
the one or two keys
/X the one or two values

S~

}

<z 00 16+

How much memory is needed for a 2-3 tree object that holds N~ — g""
—_— =

RN~ @) g

private Node left, middle, right; /f the two or three subtrees

+4
Q:PM

Stacks and Queues

Resizing arrays
* Arrays are static, simple, random access data
structures
* Arrays can be used in many applications |
— If resizing can be done efficiently uy“ \; b2
—resizing by 1is a bad idea (why?) »
— doubling the array is a good idea (why?)~

— can we get amortized constant performance in
arbitrary insertion into an array?

Data Structure Performance estimates (worst o

I e B e
| n

unordered array ™

o
ordered array
n "W
M 1 an
unordered array o | 'er "
linked list " | n "

ordered linked list
ueue

stack

binary heap

BST

LLRB.

Stack and queues

. Wt_time operations

* implementation using
— linked lists ,/
— fesizable arrays

* many variations of stacks and queues asked in
design questions

— design a queue that allows removing a random
element (in addition to deque)

— design a queue using a resizable array
— design a queue using two stacks

Using resizable arrays
* Implement a stack
— amortized constant time : pop and push

* Implement a queue with circular array

— amortized constant time: enque and deque

Resizable array questions

* resizing array by one gives amortized linear
time peritem (bad)

* resizing array by doubling/halving gives
amortized constant time (good)

* What if instead of doubling the size of the
array, we triple the size? good or bad?

» Resizing also includes shrinking the array by
% . When do we do that? When the array is
less than half full or % full? What is a
sequence of operations to justify your claim?

Possible/impossible questions

Possible/impossible questions

We can build a heap in linear time. Is it possible

to b%ﬁ&ﬂtime? \,‘TAA\"_‘
is it possible to-find the max or min of any list in
log N time? {0 \X’N‘
Is it possible to create a collection where an(@n\”
item can be stored or found in constant time
Is it possible to design a max heap where find
max, insertions and deletions can be done in
constant time?
f\r’v-mv \9'}’(=
%‘0 G’ q\U\ \oe";ég S

V&

Possible/impossible questions

* is it possible to sort a list of n keys in linear
time, where only d (some small constant) J\
distinct keys exists among n keys? A

23] 2T [331
* |s it possible to find median in an unsorted

list in linear t|mej/\%7:bm—¢ig‘

@)1“\5&7_

v B 7y)

Possible/impossible questions

* is it possible to implement a FIFO queue
using a single array, still have amortized
constant time for enque and deque? \r)ﬂ/)

\sr\\ij,é
* |s it possible to solve the 3-sum problem in
. __
n log ntime?
—

s e o el =0
WL e i -

?
Why? WM
* Why do we ever use a BST when we can
always use a hash table?

* Why do we ever use arrays when we can use
_) < drfdy:
linked lists?
T—

* Why do we ever use a heap when we can
always use a LLRB?
A
&

Y
W B Q\\H\

Union-find

guick-union and quick-find

) 7 =3 ~ <3

D/ g1 2) \.3 b—q\Qj
() (i)
&) L7 & &)

id] [(ST AT SRl R TR AT T B R

Weighted quick-union

logarithmic union and

o o o o find performance
ONONORNONO.

idD [EGH 2N F6H AN RO RGH RGN PO E4 N k4

Maintain heuristics
+ when merging two trees, smaller one gets attached to larger one —
height does not increase
+ Height only increase when two trees are the same size

Weighted Union-find question

Circle the letters corresponding to id [] arrays that cannet possibly occur during the execution
of the weighted quick union algorithm.

01234567389

A. alil: 8 0 4 0 0 4 0 4 2 0

B. alil: 4 1 82 15 11465
C. alil: 3 3 6 9 3 63 4 1 9

D. alil: 2 1 &t 11 11217

* What is the rij

t approach to solving this?

Answer to union-find question

Cirelethe letters correspond

o 341) arrays that canmot possibly occur during the execution

of the weighted quick union algorithm

A alid: 8 040040420
B ali): 4 1821511458
€ alil: 33693634159

Do alid: 2 111111217

ABC
A. The 1d(] array contains a cyele: 8 +2 343058
B. The height of the forest is 4 > 1g(10).
C. The size of tree rooted at the parent of 3 is less than twice the size of tree rooted at 3.

D. The following sequence of union operations would create the given id[] array:
2-0 1-8 7-9 0-9 8-5 4-1 1-9 3-8 5-6

Sorting

Typical question

iynx bass lion bass bass bass bass gnat wren bass
bass bear frog bear bear bear bear bass worm bear
bear orab mole clam orab clam clam bear oryx olam
crab lion hawk orab lynx orab orab crab swan orab
lion goat wrem frog frog frog ocrow lion wolf crow
geat duek lymx gnat geat goat deer goat mule deer
mole frog crab goat lion hawk dove duck mole dove
frog dove swan hawk mole lion duck frog puma duck
swan clam bear lion oclam lynx frog dove seal frog
clam hawk clam lynx hawk mole gnat clam deer gnat
hawk deer bass lynx swan swan goat hawk lien goat
wren orow goat mole wrem wren hawk deer goat hawk
mule gnat mule mule gnat gnat mule ocrow bear lion
oryx lynx eryx eryx lysx lynx oryx lynx lynx lynx
gnat lynx gnat swan mule mule lynx lynx gnat lynx
lynx puma lymx wren oryx oryx lynx oryx lynx mole
puma worm puma puma ocrow puma puma puma frog mule
worm seal worm worm puma worm worm worm orab Oryx
seal oryx seal seal seal orow seal seal bass puma
crow mule crow orow worm deer lion mule ocrow seal
deer wolf deer deer desr dove wren wren oclam swan
wolf wren wolf wolf dove duck wolf wolf hawk wolf
dove swan dove dove duck seal mole swan dove worm
duck mols duck duck wolf wolf swan mols duck wren
o 1

Use the identify the sort algorithm

basic sorts '6(\‘9}

* insertion sort @IIJ...

—invariant: Alo..i-1] is sorted A[0.1) sorted
— perform well in practice for almost sorted data

— can be used in quicksort and merge sort to speed
things up

basic sorts

—Tnvariant: A[0Q...i-1] is sorted and are the smallest
elements in the array

— not used in practice much

A[0..i-1] sorted @A [ic.n-1]

Linearithmic sorts

Standard or 2-way Quick sort

randomize the array

find a pivot (A[lo] usually)

partition the array to find a pivot position j such that Afj] = pivot
— Aflo..j-1] < Afjl and Afj] < Afj+1..hi-1]

— Pointers stop and swap on equal keys to pivot

recurse on subarrays leaving the pivot in-place

properties
— good general purpose invaria

7
+ partitioni
— not stab\e/g s VI@I‘] @

— in-place ~
— ideal for parallel imp\ementatians/

— choosing a bad pivot can lead to quadratic performance
— Works well when no duplicates

Demo of 2-way quick sort

3-way quick sort

* same as 2-way quicksort
* works well with duplicate keys
* same process

— choose a pivot, say x

— partition the array as follows

<X ==x > X

— Invariant

[= T=1 ~]

+ uses Dijkstra’s 3-way partitioning algorithm

3-way partitioning demo

= Let v be partitioning item a[le].

+ Scan i from left to right.
- (ali]l < w): exchange a[1t] with a[i]; increment both 1t and i
— (a[il » v): exchange algt] with a[i]; decrement gt
~ (a[i] == ¥): increment i

invariant

Demo of 3-way quick sort

Top-down merge sort

* facts
— recursive L
— merging is the main operation
* performance
— merging 2-sorted arrays takes lir %" e
time /\ /\
— merge sort tree is of height Ilg N
— consistent linearithmic algorithm
* other properties

DN DA

DINIS) DUNJ%) DONTS) DINTS) DOVIS) DINTR) DIVES) DO/)

Properties
— uses extra linear space + Left most items get sorted first
— Stable « Lock for 2-sorted, 4-sorted etc

+ equal keys retain relative position in
subsequent sorts

bottom-up merge sort

* facts
— iterative
— merges sub-arrays of size 2, 4, 8 (lg N times) to
finally get a sorted array
* performance
— merging all sub arrays takes linear time in each step
— merge continues Ig N times
— consistent linearithmic algorithm
* other properties
Properties
— no extra space « Look for 2-sorted, 4-sorted, 8-
— stable sorted etc
* merge step retains the position of the equal keys

Heap Sort

* build a max/min heap

» delete max/min and insert into the end of the
array (if heap is implemented as an array) until
heap is empty

« performance is linearithmic

* is heap sort stable?

Knuth shuffle

» Generates random permutations of a finite set
* algorithm
for (inti=n-1;i>0; i--) {
j = random(0..i);
exch(a[j], a[il);

sorting question

* Suppose you are sorting n-equal keys labeled k, k, k; k, ... k,

* Identify the number of compares (in terms of n) required when applying
the following algorithms
— Insertion sort
— Selection sort

= 2-way quicksort

3-way quicksort
— mergesort

— heapsort

Problem 3 — sort matching

Sort Invariants

+ Insertion sort — A[0..i]is sorted, A[i+1..n-1]is the original

« Selection sort — A[0..i] sorted and A[0..i] <= A[i+1..n-1]

« 2-way quicksort — first element is the pivot p and array is divided as
Al<=p | pl>=p]

+ 3-wayquicksort- A[<p|==p]| >pl]

+ Mergesort (bottom-up) — pairs of elements (2’s, 4s, 8's etc get
sorted. Working on whole array at once)

+ Mergesort (top-down) — pairs of elements (2’s, 4's, 8's etc) get
sorted. Working from left to right

+ Heapsort- A[1l..i]isa max heap and A[i+1..n-1] are sorted and are
the largest elements

« Knuth shuffle — A[O..i] get shuffled first and display random form.

@ bass dten bass bass bass guat wren
P50 taar fees beas bear mear bass werm
el e mar e Sie icie ises 2oz
Teic iite ‘e ceam fiap e ear e
i gosb veer feow frou otew liom weir
o, B A= — i 2= =i
feie treg oras mawh dove duem mels
Tiey pent Biem (diek irey pess
om ciia bems dymy drew Gers eat
e ot) 2 e a4 Al
i il e i e tie
wemn: oz, igedt wren hawx desr geat
e 2 2 s e
s — s e
i poiie e o
e N Toms == s
o vl i b
o i
s
e e
el el
i Sy
et
=
7 a 3 8 1

(8) Mergesort (7) Insertion sort

(4) Merg: (8) Heapsort

(9) Knuth shuffle

(6) Quicksort (3-way, no

Priority Queues

Binary heaps

* Invariant
— for each node N
* Key in N >= key in left child and key in right child
* good logarithmic performance for
—insert
— remove max
— find max (constant)
* heap building
— bottom-up =» linear time (sink each level)
— top-down =¥ linearithmic (insert and swim)

Heap questions

* Given a heap, find out which key was inserted
last?

— it must be along the path of the right most leaf node
in the tree

— We always delete the root by exchanging that with the
last leaf node

+ Build a heap
— Bottom-up
— Top-down

» Applications

— can be used in design questions where delete, insert

takes logarithmic time and find max takes constant
time

Balanced Trees

2-3 Tree operations }m l]

parentis a 3-node

o o Ief @o _ feaa oW
& q

m middle m (Gce)

- right m _, faba)

AR 5

/!
\%ﬂ /%

root

10

Ordered Symbol Tables

sequential binary
search search

search

min / max

floor / ceiling

select

ordered itera.lon

2-3 Trees

smaller than E

between E and J null link

Two invariants

Balance invariant — each path from root to leaf nodes have the same length
+ Orderinvariant— an inorder traversal of the tree produces an ordered sequence

Red-black trees

* How to represent 3-nodes?

node larger key is root

rea ‘greater
than than b

— Regular BST with red "glue" links.

than a

less betweert
than a aandb

Red-black tree properties

* A BST such that
— No node has two red links connected to it

— Every path from root to null link has the same
number of black links

— Red links lean left.

Red-black tree questions
add or delete a key to/from a red-black tree
and show how the tree is rebalanced
Determining the value of an unknown node
— Less than M, greater than G, less than L
Know all the operations
— Left rotation, right rotation, color flip
— Know how to build a LLRB using operations
Know how to go from 2-3 tree to a red-black
tree and vice versa

hashing
* simple idea
* given a key, find a hash function H(key) that computes
an integer value.
* create a table of size M and use H(key)%M to find a
place.
* hard to avoid collisions
— separate chaining
— linear probing
* choose a good hash function
— Easy to compute
— Avoid collisions

— Keep chain lengths to be (%) (log N / log log N) using a
random distribution of keys

11

examples

Symbol Tables

Hashing type questions

Given a set of keys, which table could result in?

— Look for keys that are in the table corresponding to
their hash values

* They were inserted first

— There must be at least one key that is in the position
of the hash value (first key inserted)

Know the value of a good hash function

Know how collisions are resolved using

— Separate chaining

— Linear probhing

Know when to resize the hash table

Algorithm and Data Structure Design

Covered in details in design session.
See design notes on midterm site

design problem #1

. Design@nmizedmra
insert and delete-aran
array. Need to guarant

performance

tructure that can
Item from the
m:mt

N\

0

— Insert(ltem item)
— delete()

Design Problem #3

public class MoveToFront<Item>

MoveToFront()

create an empty move-to-front data structure

add the item at the front (index 0) of the sequ

G S T (thereby increasing the indez of every other item)

Item itemAtIndex(int i) the item at index i

6 mefcine § move the item at index i to index 0
ol mtfint i
¥ ¢) (thereby increasing the index of items 0 through i - 1)

All operations should take time proportional to log N in the worst case, where N is the number
of items in the data structure.

12

Design problems

Typically challengf
ere ssible solutions
— partial credit awarded

Usually it is a data structure design to meet ¢ tain
€quiremehts i ons
rmance

eets the following perfo

— Example, create a'd_at’a_sy__ucture that
requirements
. fmdMed\a@, msert@de\et@
— Example: A leaky queue that can remove fronTany point, that can insert

to end and delete from front, all in logarithmic time or better

Typical cues to look for
— log n time may indicate that you need a sorted array or balanced BST or
some sort of a heap
— Amortized time may indicate, you can have some costly operations once
in a while, but on average, it must perform as expected

esign problem #2

: .mmq is a priority queue that allows the programmer to specify the priority
Tin object independent of the intrinsic properties of that object. This is unlike the
MaxPQ from class, which assumed the objects were comparable and used the compare
method o establish priority. You may assume the Items are comparable.

public class ExtrinsicMaxPQ<Item extends Conparable<Items» {
~, ExtinsicMaxPQ() //do not implement o \
void put(Iten x, int priority) 2
Iten detMax()
~

If an Item already exists in the priority queue, it smoae 2
adding another item perations should com|
the worst case. Your ExtrinsicMaxPQ should use memory praffortagai-to a

of items. For a small amount of partial credit, you
priority is ever changed (i.c. no item is inscrted twice)

12) T 1/ cat s tnserted with priori;

09’ 10)-
put inp Ag a #8ccoon who enjoys fries and does not like 5“’“"
put(“dog” // dog*s priority is changed to 15
delMax() I/ deletes dog, which has prierity 15,
put(“fish”, 28) // fish is inserted, and is now max
put(“fish”, 11) I/ fish's priority is reduced to 11, cat is 3
delMax() [/ removes cat (priority 12), either swimp or
delMax() I/ removing either swimp or fish is OK, both p

Key choices for design problems

Choice of data structure
— LLRB

+ insert, delete, rank, update, find, max, min, rank (logarithmic

time)

— Hash table !

* insert, find, update (constant time)

n

— Heap
« delMax, insert (logarithmic) (\3“
— symbol table m

« ordered (same as LLRB), unordered (same as hash table)
— LIFO Stack and FIFO queue h"‘\PJ‘“

+ inserts and deletes in amortized constant time

