
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 20
Scribe: Elena Sizikova April 17, 2013

Last time, we began discussing how to learn a probability distribution D from samples.
Suppose we are given:

1. a large but finite space X with |X| = N

2. D - an (unknown) distribution over X

3. x1, . . . , xm ∼ D iid samples

4. f1, . . . fn features, where each feature is a function fj : X → R

We would like to estimate the distribution D. Using the example of butterfly observance
patterns from before, we could be estimating the distribution of butterfly positions from
position features such as average temperature, average annual rainfall, altitude etc.

We have discussed two possible approaches. The first is to directly find a distribution
q∗ that maximizes the relative entropy:

P = {q |∀j : Eq[fj] = Ê[fj]}
q∗ = argmax

q∈P
H(q) where H is the entropy function

Above, Eq[fj] and Ê[fj] are defined as before:

Eq[fj] = Ex∼q[fj(x)] and Ê[fj] =
1

m

m∑
i=1

fj(xi)

Analytically, it is usually difficult to find a maximizer for H directly. The second
approach is to use a parametric form, i.e. find a parameter λ = 〈λ1, . . . , λm〉 in order to
minimize:

L(λ) = − 1

m

m∑
i=1

ln(qλ(xi))︸ ︷︷ ︸
form of log loss

(1)

Above, qλ is defined to be:

qλ(x) =
exp

(∑
j λjfj(x)

)
Zλ

where Zλ is a normalization constant. We can rewrite q as:

qλ(x) =
exp(gλ(x))

Zλ
where we use gλ(x) :=

n∑
j=1

λjfj(x)

The usual approach of setting the derivative of qλ with respect to λj to 0 does not yield
an easily solvable system of equations, so instead we will use an iterative method of finding

the minimum:

Choose λ1

For t = 1, 2, . . .
compute λt+1 from λt

i.e. we are trying to find a sequence of λ1,λ2,λ3, . . . such that:

lim
t→∞

L(λt) = inf
λ
L(λ)

Above, we have assumed that the features are arbitrary functions, but in practice, we make
the following assumptions (without loss of generality):

∀x∀j : fj(x) ≥ 0 (2)

∀x :
n∑
j=1

fj(x) = 1 (3)

It is straightforward to justify why (2) and (3) come w.l.o.g. Adding a constant to the
feature function does not affect distribution q, so we can assume (2). We can also scale the
features to have range: fj : X →

[
0, 1n

]
, without affecting the distribution:∑
j

fj(x) ≤ 1

Finally, we create a dummy feature f0 defined by:

f0(x) = 1−
n∑
j=1

fj(x) which again doesn’t alter q

we obtain (3) for the set of all features.

Consider the difference of loss functions after each iteration of the algorithm:

∆L = L(λt+1)− L(λt)

We will derive a tractable approximation to ∆L and minimize it, since minimizing the loss
at each step is equivalent to minimizing the overall loss. Let us focus on a particular round
λ = λt and λ′ = λt+1. We have:

∆L = L(λ′)− L(λ)

=
1

m

m∑
i=1

[
− ln

(
exp(gλ′(xi))

Zλ′

)
+ ln

(
exp(gλ(xi))

Zλ

)]
=

1

m

∑
i

[gλ(xi)− gλ′(xi)] + ln

(
Zλ′

Zλ

)
(4)

2

For the first term in (4), write the update to λ as λ′j = λj + αj . Then this term becomes:

1

m

∑
i

[gλ(xi)− gλ′(xi)] =
1

m

∑
i

∑
j

(
λjfj(xj)− λ′jfj(xj)

)
=
−1

m

∑
i

∑
j

αjfj(xi)

= −
∑
j

αj

(
1

m

∑
i

fj(xi)

)
︸ ︷︷ ︸
empirical average of fj

= −
∑
j

αjÊ[fj]

Now, rewriting the second term:

Zλ′

Zλ
=

∑
x∈X exp

(∑
j λ
′
jfj(x)

)
Zλ

=
∑
x∈X

exp
(∑

j λjfj(x)
)

Zλ︸ ︷︷ ︸
qλ(x)

· exp

∑
j

αjfj(x)



=
∑
x

qλ(x) exp

∑
j

αjfj(x)


Note that for each x, the feature values f1(x), . . . , fn(x) form a distribution by our assump-
tions (2) and (3). Also

∑
j αjfj(x) is a weighted average of the αjs. Using convexity of the

exponential function, we have:

Zλ′

Zλ
≤
∑
x

qλ(x)
∑
j

fj(x)eαj

=
∑
j

eαj
∑
x

qλ(x)fj(x)︸ ︷︷ ︸
Eqλ [fj]

Finally, going back to (4), we have:

∆L =
1

m

∑
i

[gλ(xi)− gλ′(xi)] + ln

(
Zλ′

Zλ

)
≤ −

∑
j

αjÊ[fj] + ln
(∑

eαjEqλ(fj)
)

= −
∑
j

αjÊj + ln

∑
j

eαjEj

 (5)

where we define Êj := Ê[fj] and Ej := Eqλ(fj). Notice that we can now optimize the RHS
of (5) directly, by taking partial derivatives:

0 =
∂

∂αj
= −Êj +

Eje
αj∑

j Ejeαj

3

Notice that if αj is a solution to the above, then so is αj + c for a constant c, and so we
choose c so that the denominator

∑
j Eje

αj is equal to zero. We thus find a solution where

αj = ln
(
Êj/Ej

)
. It follows that the algorithm’s iterative update on round t is:

λt+1,j = λt,j + ln

(
Ê[fj]

Eqλt
(fj)

)

we hope that this process converges to the optimal value of λ.

Thus, it remains to prove convergence. Define pt = qλt .
Definition. A function A : { probability distributions over X} → R is an auxiliary func-
tion if it satisfies the following requirements:

1. A is continuous

2. L(λt+1)− L(λt) ≤ A(pt) ≤ 0. (We want ≤ 0 so that the loss is always decreasing.)

3. If for some distribution p, A(p) = 0, then Ep [fj] = Ê[fj] for all j. In other words,
p ∈ P .

Theorem. pt → q∗.
We first prove that if an auxiliary function A exists, then the theorem statement holds.

Suppose A is an auxiliary function. We know that L ≥ 0 by properties of ln(x) and
definition of L. By the second property of auxiliary functions, the loss L is decreasing and
bounded below by 0, so L(λt+1)− L(λt)→ 0, and thus A(pt)→ 0 as t→∞.

Now, we consider what happens at the limit of t. Suppose p = limt→∞ pt. Since for all
t, pt ∈ Q, where Q is the closure of Q, we have that p ∈ Q. Also, since A is continuous,

A(p) = A(lim
t→∞

pt) = lim
t→∞

A(pt) = 0

Thus, p ∈ P . But now we have proved that p ∈ P and p ∈ Q, so p ∈ P ∩ Q. As we have
stated (without proof) a theorem that P ∩Q = {q∗}, it follows that p = q∗.
(This assumes that the limit limt→∞ pt exists. If it does not exist, applying general re-
sults from real analysis (which are slightly beyond the scope of this class), we know that
{pt|t = 0, 1, . . .} belong to a compact subspace of Rn, and so there is a convergent subse-
quence of pt’s. By the same proof just given, this subsequence must converge to q∗. Thus,
the only limit point of this subsequence is q∗. Therefore, by general results from real anal-
ysis, the entire sequence pt converges to q∗.)

We now have:

∆L ≤ −
∑
j

αjÊj + ln

∑
j

eαjEj


= −

∑
j

Êj ln
Êj

Ej
+ ln

∑
j

Êj

 using αj = ln
(
Êj/Ej

)
(6)

4

Now,for any distribution q,

∑
j

Eq[fj] = Eq

∑
j

fj(x)

 = Eq[1] = 1

and therefore Eq[f1], . . . ,Eq[fn] forms a distribution. In particular, this means that Êj and
Ej form distributions.

So in (6), we find that the second term simplifies to:

ln

∑
j

Êj

 = ln 1 = 0

Hence we can rewrite (6) in terms of relative entropy:

∆L ≤ −RE
(〈

Ê[f1], . . . , Ê[fn]
〉
|| 〈Ept(f1), . . . ,Ept(fn)〉

)
Now, define:

A(p) := −RE
(〈

Ê[fj]
〉
|| 〈Ep(fj)〉

)
where

〈
Ê[fj]

〉
:=
〈
Ê[f1], . . . , Ê[fn]

〉
and 〈Ep(fj)〉 := 〈Ep(f1), . . . ,Ep(fn)〉.

It remains to verify that A is an auxiliary function. Clearly A satisfies properties 1 and 2
(continuity and non-positivity) of auxiliary functions, by properties of relative entropy.
Now, relative entropy is zero iff two distributions are indentical, so A(p) = 0 implies
Ê[fj] = Ep(fj) for all j, i.e. p ∈ P . �

Observe that we have not addressed over how quickly does the given algorithm converge,
but this is out of scope of the lecture.

Next: The above algorithm applies to the batch setting. The following is an outline of
an analogous algorithm for the online setting, that we will explore next time:

For round t = 1, . . . , T :
Each expert i chooses distribution pt,i over X
Master combines the distribution into its own distribution qt
Observe xt ∈ X
Evaluate loss = − ln qt(xt)

We want:

T∑
t=1

− ln qt(xt) ≤ min
i

T∑
t=1

− ln pt,i(xt)︸ ︷︷ ︸
loss of expert i

+ small regret

5

