
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 17
Scribe: Madhuvanthi Jayakumar April 08, 2013

1 Review of Winnow Algorithm

Algorithm 1 Winnow.

procedure Winnow
∀i : w1,i = 1

N
for t = 1, . . . , T do

Get xt ∈ RN
Predict ŷt = sign(wt · xt)
Get yt ∈ {−1,+1}
Update, if mistake: wt+1,i =

wt,i
Zt
eηytxt,i

Comments about algorithm:

• wt is the weight vector. We can view it as a probability distribution (non-negative
values, and sums up to 1). Initially it is uniformly distributed.

• xt can be thought of as a point in space or as an N-dimensional vector

• If there is no mistake, the weight is carried over to the next iteration: wt+1 = wt

2 Upperbounding Number of Mistakes for Winnow

Assumptions:

1. A mistake is made on every round.

2. ∀t : ‖xt‖∞ ≤ 1

3. ∃δ,u,∀t : yt(u · xt) ≥ δ > 0

4. ∀t : ‖u‖1 = 1

5. ∀i : ui ≥ 0

Theorem 2.1. Under the assumptions made above, we can bound the maximum number of

mistakes that can be made by the algorithm to 2 lnN
δ2

if η = 1
2 ln 1+δ

1−δ

mistakes ≤ lnN

ηδ + ln (2
eη+e−η)

≤ 2 lnN

δ2

if η =
1

2
ln (

1 + δ

1− δ
)

(1)

Proof. Last time, we showed:

Φt = RE(u||w) ≥ 0 (2)

Φt+1 − Φt ≤ −c (3)

where c = ηδ + ln 2
eη+e−η

Today, we will bound the number of mistakes by bounding the total change in potential.
We first upperbound Φ1, the potential on the first round.

Φ1 = RE(u||w)

=
∑

ui ln(uiN)

≤
∑

ui ln(N)

= lnN

(4)

At this point we have upper bounded the potential for the first round. We also know the
following two things:

1. The minimum change in each potential is c, and since there are T rounds

• This imiplies that the minimum total change in potential has to be at least cT .

2. The potential can never be negative (and Φ1 ≤ lnN).

• This implies that the maximum total change in potential can be at most lnN .

Hence, we can upperbound the maximum number of iterations of the algorithm in terms of
N and c in the following way.

cT ≤ total change ≤ lnN
cT ≤ lnN
T ≤ lnN

c

Since our first assumption is that there is a mistake on every round, the number of mistakes
is also bounded by this value. We have thus proved Theorem 2.1 to bound the number of
mistakes in the algorithm which does not depend on probability assumptions.

Minimizing bound: We would like to set the value of c such that the bound is minimized.
To do this, we get the value of η that will result in the minimum bound by taking the
derivative and setting it equal to 0. Solving for η we get:

2

η = 1
2 ln 1+δ

1−δ

Plugging this back into our equation for c, we get that:

c = RE(12 −
δ
2 ||

1
2)

Since we are taking the Relative Entropy between two bernoulli items, we can reduce it (to
2 times the difference between the two bernoulli items) to get:

c ≥ 2 · (δ2)2 = δ2

2

We have thus proved the bound in the theorem:

T ≤ lnN
c ≤

2 lnN
δ2

3 Balanced Winnow

Now we would like to remove the fifth assumption that ∀i : ui ≥ 0
The quick and dirty way of doing this is to modify the two vectors, x and u. Say we have
vectors x and u as given below. We modify x to get x′ by creating two copies of x and
modifying the second copy such that their signs are negated. We modify u to get u′ by cre-
ating two copies of u and modifying the second copy such that all the negative components
are zero.
x = (1 0.7 − 0.4) → x′ = (1 .7 − .4 | − 1 − .7 .4)
u = (0.5 − 0.2 0.3) → u′ = (0.5 0 .3 | 0 .2 0)
We’ve doubled the number of components but the other three previously made assumptions
still hold, as shown:

Assumptions:

1. A mistake is made on every round: yes.

2. ∀t : ‖x′t‖∞ ≤ 1

• ‖x′t‖∞ is also unchanged since we haven’t changed the maximum absolute value.

3. ∃δ,u′,∀t : yt(u
′ · x′t) ≥ δ > 0

• Inner product is unchanged: x′ · u′ = x · u. The dot product on non-negative
portion stays the same. The dot product of the negative portion cancels out
because it is positive but taking the inner product with negative of xt.

4. ∀t : ‖u′‖1 = 1

• ‖u′‖1 is also unchanged since we take the absolute value of each component
exactly once.

3

4 Compare Perceptron and Winnow/WMA

Perceptron Winnow/WMA

Additive Update Multiplicative update
‖xt‖2 ≤ 1 ‖xt‖∞ ≤ 1
‖u‖2 = 1 ‖u‖1 ≤ 1

SVM Adaboost

5 Regression

Until now, we have been learning to classify objects as labels 0/1 or -1/1. Our goal was
to minimize the number of mistakes made by the algorithm or minimze the probability of
making mistakes. We talked about how PAC outputs a hypothesis whose probability of
making a mistake we wanted to be low. With online learning algorithms, we wanted the
number of mistakes made by the algorithm to be low. We were able to evaluate these by
looking at the labels. Now we want to switch focus and have a different goal which is not
just to get the correct label.

5.1 Example

We will introduce this topic with an example. Say we are looking to hire Alice or Bob to
predict the weather. We ask each of them to predict the probability that it rains. Alice says
the probability of it raining is 70% and Bob says it is 80%. We see the outcome (that it
rains) but we don’t know the underlying probability, so we can’t say whether Alice or Bob
was closer to the actual probability. In the following sections, we explore how to come up
with a percentage that is close to the true probabilities even though we can never observe
true probabilities.

First we will formally state the problem. We will then create a model for scoring the
prediction and state and prove a theorem that shows why the model works.

5.2 Formal Statement of Problem

We are given the weather conditions x, and we would like to predict the value of y, which
is 1 if it rains, and 0 otherwise. We obtain both x and y from distribution D, (x, y) ∼ D.
Our goal is to estimate Pr[y = 1|x]. We never get to observe this, we only get the outcome
y. We define p(x) = Pr[y = 1|x] = E[y|x]. We use expectation to have a more general
problem statement, that allows y to be any real number and not necessarily restrict it to
0 or 1. This problem is called regression. We may define hA(x) as Alice’s estimate of the
porbability of rain given x, and hB(x) as Bob’s estimate of the probability of rain given x.

5.3 Model

We define square/quadratic loss as (h(x) − y)2 and we use this to score how good the
prediction is. Taking the difference of the hypothesis and outcome is a natural way to
characterize this and squaring gives nicer mathematical properties (differentiable, etc). We
define risk to be the expected loss, E[(h(x)−y)2], and choose h that minimizes the expected
value over x, y. We define the risk with respect to the true distribution D as the true risk.
We will show how to estimate this from samples, by looking at a set of predictions and
outcomes and taking the average loss. Theorem 5.1 and its associated proof shows why

4

minimizing this expectation leads to a good prediction.

First we fix x and define the following:

h = h(x) and p = p(x) = Pr[y = 1|x]

Then we have that:

E[(h− y)2] = p(h− 1)2 + (1− p)h2.
This comes from the definition of expectation: Pr[y=1] · resulting loss + P[y=0] · resulting
loss.
To minimize the expectation, we take the derivative with respect to h and set it equal to 0.

dE
dh = 2(h− p) = 0, resulting in h = p.

This implies that the loss is minimized when we set h = p. We cannot directly observe p,
but this result shows that minimizing the loss will lead us to choose h which is equal to p.
Now we will state a theorem that is more general and stronger that applies to any value of
x.

Theorem 5.1. Ex[(h(x)− p(x))2] = Ex,y[(h(x)− y)2]− Ex,y[(p(x)− y)2]

Note:

• The first term is the loss/risk we can measure to estimate from data.

• The second term measures the intrinsic noise of y.

• Our goal is to minimize E[(h(x)− p(x))2].

– Since the variance of y does not depend on h, we have that E[(h(x)− p(x))2] =
E[(h(x)− y)2]−constant

– Therefore minimizing E[(h(x) − y)2] also minimizes E[(h(x) − p(x))2] and this
justifies the use of square loss to get the best prediciton.

Proof. We will prove Theorem 5.1 for fixed x. Then we can use linearity of expectations to
show that it holds for any expectation of x. We define h = h(x), and p = p(x) = E[y|x] =
E[y]. We will modify the LHS and RHS of the equations to show that they are both equal
to each other.

LHS = (h− p)2.

Explanation: we can remove the expectation because x is fixed.

RHS = E[(h− y)2]− E[(p− y)2]

= E[(h2 − 2hy + y2)− (p2 − 2py + y2)]

= h2 − 2hE[y]− p2 + 2pE[y]

= h2 − 2hp+ p2

= (h− p)2

= LHS

(5)

5

6 Linear Regression

We can estimate the smallest value of E[(h(x)− y)2] by looking at the empirical average of
the given sample. Given m samples, (x1, y1)...(xm, ym) ∼ D:

Ê[(h(x)− y)2] = 1
m

m∑
i=1

h(xi − yi)2 = E[Lh].

This is the empirical risk that can be measured using training data. We define

Lh(x, y) = (h(x)− y)2

Now we do the following two things:

1. Prove/argue w.h.p. ∀h ∈ H, Ê[Lh] ≈ E[Lh]. This is a uniform convergence problem.

2. Minimize Ê[Lh]. This is a computational problem.

6.1 Example

Suppose we are given m examples, (x1, y1)...(xm, ym) with xi ∈ Rn and labels yi ∈ R
Our hypothesis is of the form, h(x) = w · x, which is linear for some fixed vector w
We then have:

Ê[Lh] =
1

m

m∑
i=1

(h(xi)− yi)2

=
1

m

m∑
i=1

(w · xi − y)2 (6)

We would like to find the w that minimizes this quantity. This is called linear regression.
We will work with this in matrix form, defining M to be the matrix of vectors x.

← xT1 →
← xT2 →

...
← xTm →

w1

w2

...
wn

−

y1
y2
...
yn

Mw − b∥∥∥∥∥∥∥∥

w · x1 − y1
w · x2 − y2

...
w · xm − ym

∥∥∥∥∥∥∥∥
2

2

= ||Mw − b||22

The Euclidean length squared will give us the sum of squared errors,
m∑
i=1

(w · xi − yi)2

Now we find w that minimizes this. To do this, we compute the gradient and set it equal
to 0 and solve for w.

OΦ = 2MT (Mw − b) = 0
w = (MTM)−1MTb

(MTM)−1MT is known as the pseudo inverse of MT .

6

7 Combining Regression with Online Learning

Now we take a look at what regression looks like in an online learning setting.

Algorithm 2 Regression with Online Learning

procedure Regression
Initialize w1

for t = 1, . . . , T do
get xt ∈ RN
predict ŷt = wt · xt ∈ R
get yt ∈ R
loss = (ŷt − yt)2
update wt

Our goal is to minimize loss, LA =
T∑
t=1

(ŷt − yt)2

We are interested in updating the weight wt and using it in a linear way to make predic-
tions without making any randomness assumptions. We analyze the loss suffered using one
particular weight vector u ∈ RN :

• Predict: u · xt

• Loss: (u · xt − yt)
2

• Cumulative loss
T∑
t=1

(u · xt − yt)2

We would like to achieve the result:

LA ≤ minLu+small amount: ”regret”

where Lu =
T∑
t=0

(u · xt − yt)2

Lu is the loss of a linear predictor u. The above inequality for LA says that if there exists any
predictor that gives good predictions, then our algorithm performs close to that predictor.

8 Widrow-Hoff (WH) Algorithm

Towards the end of class, we introduced the Widrow Hoff Algorithm, which is a particular
kind of online regression algorithm. This algorithm uses the weight vector in the following
way:

• intialize: w1 = 0

• update: wt+1 = wt − η(wt · xt − yt)xt

There are two main motivations for this algorithm. We discuss the first one here and will
continue the rest during the next lecture.
We define our loss function as:

7

L(w,x, y) = (w · x− y)2

The gradient descent of this is:

OwL = 2(w · x− y) · x

We have wt and we use xt and yt to improve wt+1 so that loss will be slightly smaller on
the example that we just observed. The equation below moves w in the direction of the
gradient, which minimizes the loss function.

wt+1 = wt − 1
2ηOwL(wt,xt, yt)

8

