
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #16
Scribe: Yannan Wang April 3, 2014

1 Introduction

The goal of our online learning scenario from last class is C comparing with best expert and
do as well as the best expert.

An alternative scenario is there is no single good expert. But we could form a committee
of experts and they might be much better.

We’ll formalize this as follows:

• We have N experts.

• For t = 1, ..., T we get xt ∈ {1,−1}N
Note: xt: a set of predictions
N : dimension
ith component: prediction of expert i

• In each round, learner predicts ŷt ∈ {1,−1}

• In each round, we observe the outcome yt ∈ {1,−1}

• The above is the same; what we changed is the assumption of data. We assume that
there is a perfect committee, i.e. a weighted sum of experts that are always right.
Formally, this means that u ∈ RN ,

∀t : yt = sign(
N∑
i=1

uixt,i) = sign(xt · u)

⇐⇒ yt(u · xt) > 0

Geometrically, the perfect committee means that there is a linear threshold that sep-
arates the 1 points and −1 points, generated by the appropriate weighted sum of the
experts.

2 How to do updates

We are focusing on wt, the prediction of u. It is sort of a “guess” of the correct weighting
of the experts. We will update the weighting on each round. Today we are looking at two
algorithms. For each algorithm, we only need to focus on

(1)initialize

(2)update

Figure 1: Perceptron geometric intuition: tiping the hyperplane

2.1 Perceptron

The first way to update weights will give us an algorithm called Perceptron. The update
rules are as follows:

• Initialize: w1 = 0

• Update: If mistake(⇐⇒ ŷt 6= yt ⇐⇒ yt(wt · xt) ≤ 0),

wt+1 = wt + ytxt

else,

wt+1 = wt

Not adjusting the weights when there are no mistakes makes the algorithm conserva-
tive; the algorithm ignores the correctly classifying samples.

The intuition is that in case of a wrong answer we “shift” the weights on all the experts in
the direction of the correct answer. Figure 1 gives a geometrical intuition of the Perceptron
algorithm. Here yt = +1, when (xt, yt) is classified incorrectly, then we add xtyt to wt to
such a direction that is more likely to correctly classify (xt, yt) next time; we are shifting
the hyperplane defined by wt in such a direction that we are more likely to correctly classify
xt.

Now let’s state a theorem to formally analyze the performance of the Perceptron algo-
rithm. However, first we will make a a few assumptions:

• Mistakes happens in every round. This is because no algorithmic change happens
during other rounds. So: T = # of rounds = # of mistakes.

• We normalize the vector of predictions xt, so that ‖xt‖2 ≤ 1.

2

• We normalize the vector of weights for the perfect committee, so that‖u‖2 = 1. (This
is fine because the value of the sign function will not be affected by this normalization.)

• We make the assumption that the points are linearly separable with margin at least δ:
∃δ,u ∈ IRN,∀t : yt(u ·xt) ≥ δ > 0. Note that this assumption is with loss of generality.

Theorem 2.1 Under the assumptions above, T = # mistakes, we have

T ≤ 1
δ2

Proof : In order to prove this, we will find some quantity that depends on the state of the
algorithm at time t, upper bound and lower bound it, and derive a bound from there. The
quantity here is Φt, which is cosine of the angle Θ between wt and u. More formally,

Φt =
wt · u
‖wt‖2

= cos Θ ≤ 1

Now for the lower bound, we will prove that

ΦT+1 ≥
√
Tδ

We will do this in two parts — by lower bounding the numerator of Φt and by upper
bounding the denominator.

• step 1: wT+1 · u ≥ Tδ:

wt+1 · u = (wt + ytxt) · u = wt · u + yt(u · xt) ≥ wt · u + δ

The inequality is by the 4th assumption above. Initially we have set w1 · u = 0, thus
the above bound implies that wT+1 · u ≥ Tδ.

• step 2: ‖wT+1‖2 ≤ T :

‖wt+1‖2 = wt+1 ·wt+1 = (wt + ytxt) · (wt + ytxt) = ‖wt‖22 + 2yt(xt ·wt) + ‖xt‖2

Since we have made the assumption that we get a mistake at each round, yt(xt ·wt) ≤ 0,
and from the normalization assumption, ‖xt‖22 ≤ 1, so that we get ‖wt+1‖2 ≤ ‖wt‖22 + 1.
Initially we have set ‖w1‖22 = 0, so we get ‖wT+1‖22 ≤ T

Now we put step 1 and step 2 together, 1 ≥ ΦT+1 ≥ Tδ√
T

, i.e. T ≤ 1
δ2

. �

Let H be the hypothesis space and Mperceptron(H) be the number of mistakes made by
the Perceptron algorithm. As a simple consequence of the above, since the VC dimension
of the hypothesis space is upper bounded by the number of mistakes the algorithm makes,
we get the VC dimension of threshold functions with margin at least δ is at most 1

δ2
:

V C-dim(H) ≤ opt(H) ≤Mperceptron(H) ≤ 1
δ2

Now consider a scenario where the target u consists of 0s and 1s, and the number of 1s
in the vector is k.

u =
1√
k

(0 1 0 0 1 ...)

3

Note that here 1√
k

is for normalization. Think of k as being small compared to N , the
number of experts, i.e. it could be a very sparse vector. This is also one example of the
problems we earlier examined — the k experts are the “perfect” committee. We have,

xt =
1√
N

(+1, −1, −1, +1, ...)

yt = sign(u · xt)

yt(u · xt) ≥
1√
kN

Note that here 1√
N

is for normalization. So using 1√
kN

as δ, by Theorem 2.1, the
Perceptron algorithm would make at most kN mistakes. However this is not good —
consider interpreting the experts as features, and we have millions of irrelevant features,
and the committee is the important (maybe a dozen) features. We get a linear dependencies
on N , which is usually large.

Motivated by this example, we present another update algorithm, called the Winnow
algorithm, which will get a better bound.

2.2 Winnow Algorithm

• Initialize:
∀i, w1,i =

1
N

we start with a uniform distribution over all experts.

• Update: If we make a mistake,

∀i : wt+1,i =
wt,i · eηytxt

Zt

Here η is a parameter we will define later, and Zt is a normalization factor. Else,

wt+1 = wt

This update rule is like exponential punishment for the experts that are wrong. If we
ignore the normalization factors, the above update is equivalent to wt+1,i = wt,ie

η, if i
predicts correctly, and wt+1,i = wt,ie

−η otherwise. Ignoring the normalization factor, we
could see it as wt+1,i = wt,i, if i predicts correctly, and wt+1,i = wt,ie

−2η otherwise. This is
the same as the weighted majority vote.

Before stating the formal theorem for the Winnow algorithm, we make a few assumptions
without loss of generality:

• We make mistake at every round.

• ∀t : ‖xt‖∞ ≤ 1.

• ∃δ, u : ∀t : yt(u · xt) ≥ δ > 0.

• ‖ u ‖1= 1 and ∀i: ui ≥ 0.

Notice here we used L1 and L∞ norm here instead of the L2 norm that we used in
Perceptron algorithm.

4

Theorem 2.2 Under the assumptions above, We have the following upper bound on the
number of mistakes:

T ≤ lnN
ηδ + ln(2

eη+e−η)

If we choose an optimal η to minimize the bound , we get when η = 1
2 ln(1+δ

1−δ),

T ≤ 2 lnN
δ2

Proof The approach is similar to the previous one. We use a quantity Φt, which we both
upper and lower-bound. The quantity we use here is Φt = RE(u ‖ wt). Immediately we
have, Φt ≥ 0 for all t.

Φt+1 − Φt =
∑
i

ui ln(
ui

wt+1,i
)−

∑
i

ui ln(
ui
wt,i

)

=
∑
i

ui ln(
wt,i
wt+1,i

)

=
∑
i

ui ln(
Zt

eηytxt,i
)

=
∑
i

ui lnZt −
∑
i

ui ln eηytxt,i

= lnZt − ηyt(u · xt)
≤ lnZt − ηδ

(1)

The last inequality follows from the margin property we assumed. Now let’s approximate
Zt. We know that Z is the normalization factor and can be computed as:

Z =
∑
i

wie
ηyxi (2)

Note that here we are dropping the subscript t for simplicity; Z and wi are same as Zt
and wt,i. We will bound the exponential term by a linear function, as illustrated in figure
2:

eηx ≤ (
1 + x

2
)eη + (

1− x
2

)e−η, for − 1 ≤ x ≤ 1.

Using this bound, we have:

Z =
∑
i

wie
ηyxi

≤
∑
i

wi(
1 + yxi

2
)eη +

∑
i

wi(
1− yxi

2
)e−η

=
eη + e−η

2

∑
i

wi +
eη − e−η

2
y

∑
i

wixi

=
eη + e−η

2
+
eη + e−η

2
y(w · x)

≤ eη + e−η

2

(3)

5

Figure 2: Using linear function to bound exponential function

The last inequality comes from the assumption that the expert makes a wrong prediction
every time, so the second term is less than 0. So we have,

Φt+1 − Φt ≤ lnZt − ηδ

≤ ln(
eη + e−η

2
)− ηδ = −C

(4)

Note that here ln(e
η+e−η

2) − ηδ is a constant and let’s make it equals −C. So for each
round Φt is decreasing by at least C = ln(2

eη+e−η) + ηδ.
In the next class, we will finish the proof of Theorem 2.2 and we will study a modi-

fied version of Winnow Algorithm called Balanced Winnow Algorithm that gets rid of the
assumption that ∀i : ui ≥ 0.

6

