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1 Margin Theory for Boosting

Recall from the earlier lecture that we may write our hypothesisH(x) = sign
(∑T

t=1 atht(x)
)

,
where at = αt/

∑
s αs (so that

∑
t at = 1) and h1, . . . , hT are the weak hypotheses that we

obtained over T iterations of AdaBoost.
Writing f(x) =

∑T
t=1 atht(x), we define margf (x, y) = yf(x) to be the margin of f for

a training example (x, y). In the last lecture, we have seen that this quantity represents
the weighted fraction of ht’s that voted correctly, minus the weighted fraction of ht’s that
voted incorrectly, for the class y when given the data x.

A few remarks about the margin:

– yf(x) takes values in the interval [−1, 1]

– yf(x) > 0 if and only if H(x) = y

– The magnitude |yf(x)| represents the degree of ‘confidence’ for the classification H(x).
A number substantially far from zero implies high confidence, whereas a number close
to zero implies low confidence.

It is therefore desirable for the margin yf(x) to be ‘large’, since this represents a correct
classification with high confidence. We will see that under the usual assumptions, AdaBoost
is able to increase the margins on the training set and achieve a positive lower bound for
these margins. In particular, this means that the training error will be zero, and we will
see that larger margins help to achieve a smaller generalization error.

In this lecture, we aim to show that:

1. Boosting tends to increase the margins of training examples. Moreover, a bigger edge
will result in larger margins after boosting.

2. Large margins on our training set leads to better performance on our test data (and
this is independent of T , the number of rounds of boosting)

Notation

S Training set 〈(x1, y1), . . . , (xm, ym)〉
H Weak hypothesis space
d VCdim(H)
co(H) Convex hull of H, the set of functions given by{

f(x) =
∑T

t=1 atht(x) : a1, . . . , aT ≥ 0,
∑

t at = 1, h1, . . . , hT ∈ H, T ≥ 1
}

PrD Probability with respect to the true distribution D
ED Expectation with respect to the true distribution D
P̂ rS Empirical probability with respect to S
ÊS Empirical expectation with respect to S



1.1 Boosting Increases Margins of Training Examples

We will show that given sufficient rounds of boosting, we can guarantee that yif(xi) ≥ γ ∀ i,
where γ > 0 is the edge in our weak learning assumption. In particular, this means that
H(x) will classify each training example correctly, and do so with confidence at least γ.
The main result we will use is the following.

Theorem 1. For θ ∈ [−1, 1], we have

P̂ rS [ yf(x) ≤ θ ] ≤
T∏
t=1

[
2
√
ε1−θt (1− εt)1+θ

]
(1)

Moreover, if εt ≤ 1
2 − γ for t = 1, . . . , T , then

P̂ rS [ yf(x) ≤ θ ] ≤
[√

(1− 2γ)1−θ(1 + 2γ)1+θ

]T
(2)

Proof. Recall from the last lecture that

1
m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi)

)
=

T∏
t=1

Zt =
T∏
t=1

2
√
εt(1− εt)

where we had set αt = 1
2 ln 1−εt

εt
to obtain the last equality.

Using a similar argument as before,

P̂ rS [ yf(x) ≤ θ ] =
1
m

m∑
i=1

1{yif(xi) ≤ θ}

=
1
m

m∑
i=1

1{yi
T∑
t=1

αtht(xi) ≤ θ
T∑
t=1

αt}

≤ 1
m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi) + θ

T∑
t=1

αt

)

= exp

(
θ

T∑
t=1

αt

)
1
m

m∑
i=1

exp

(
−yi

T∑
t=1

αtht(xi)

)

= exp

(
θ

T∑
t=1

αt

)
T∏
t=1

Zt

=
T∏
t=1

eθαtZt

=
T∏
t=1

[
2
√
ε1−θt (1− εt)1+θ

]
where the inequality follows from 1{x ≤ 0} ≤ e−x, and the final equality is achieved by
setting αt = 1

2 ln 1−εt
εt

.
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The second result uses the fact that if εt ≤ 1
2 − γ, then

eθαtZt = eθαt
(
εte

αt + (1− εt)e−αt
)

≤ eθαt

[(
1
2
− γ
)
eαt +

(
1
2

+ γ

)
e−αt

]
=
√

(1− 2γ)1−θ(1 + 2γ)1+θ

by setting αt = 1
2 ln

( 1
2
+γ

1
2
−γ

)
. The reader should verify the inequality and work out the

details.

Remark. By setting θ = 0 in the above result, we recover the bound on training error
proven in the previous lecture. Moreover, it is possible to show that for any 0 < θ ≤ γ, the
term (1− 2γ)1−θ(1 + 2γ)1+θ < 1, hence as T →∞ the RHS of (2) goes to zero. As an easy
consequence, we have the following:

Corollary. If the weak learning assumption holds, then given sufficiently large T , we have
yif(xi) ≥ γ ∀ i.

1.2 Large Margins on Training Set Reduce Generalization Error

Previously, we have shown that with probability at least 1− δ,

err(H) ≤ êrr(H) + Õ

(√
Td+ ln(1/δ)

m

)
We can rewrite this equivalently as

PrD[ yf(x) ≤ 0 ] ≤ P̂ rS [ yf(x) ≤ 0 ] + Õ

(√
Td+ ln(1/δ)

m

)
We will now prove a variant of this result where the upper bound does not depend on T ,
but instead on a parameter θ that we can relate to the margin.

Theorem. For 0 < θ ≤ 1, with probability at least 1− δ,

PrD[ yf(x) ≤ 0 ] ≤ P̂ rS [ yf(x) ≤ θ ] + Õ

(√
d/θ2 + ln(1/δ)

m

)
.

Before we prove the theorem, we will first introduce two lemmas.

Recall that for S = 〈z1, . . . , zm〉 and F = {f : Z → R}, the empirical Rademacher
complexity of F is given by

R̂S(F) = Eσ

[
sup
f∈F

1
m

m∑
i=1

σif(zi)

]

In the last lecture, we’ve seen that R̂S(H) = Õ

(√
d
m

)
. The following lemma tells us how

R̂S(co(H)) relates to R̂S(H).
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Lemma 1. The Rademacher complexity of H is equal to the Rademacher complexity of its
convex hull. In other words, R̂S(co(H)) = R̂S(H).

Proof. Since H ⊂ co(H), it is clear that R̂S(H) ≤ R̂S(co(H)). Moreover,

R̂S(co(H)) = Eσ

[
sup

f∈co(H)

1
m

m∑
i=1

σi
∑
t

atht(xi)

]

= Eσ

[
sup

f∈co(H)

1
m

∑
t

at

m∑
i=1

σiht(xi)

]

≤ Eσ

[
sup

f∈co(H)

1
m

∑
t

at sup
h∈H

m∑
i=1

σih(xi)

]

= Eσ

[
sup

f∈co(H)

1
m

sup
h∈H

m∑
i=1

σih(xi)

]

= Eσ

[
1
m

sup
h∈H

m∑
i=1

σih(xi)

]
= R̂S(H)

To obtain the fourth line we had used the fact that
∑

t at = 1, and for the fifth line we note
that the expression in supf (..) does not depend on f , so we could omit the supf function.
We therefore conclude that R̂S(co(H)) = R̂S(H).

Next, for any function φ : R → R, and f : Z → R, we define the composition
φ ◦ f : Z → R by φ ◦ f(z) = φ(f(z)). We also define the space of composite functions
φ ◦ F = {φ ◦ f : f ∈ F}.

Lemma 2. Suppose φ is Lipschitz-continuous, that is, ∃ Lφ > 0 such that ∀ u, v ∈ R,
|φ(u)− φ(v)| ≤ Lφ|u− v|. Then R̂S(φ ◦ F) ≤ LφR̂S(F).

Proof. See Mohri et al.

Equipped with the two lemmas, we are now ready to prove the main theorem. We will
state the result once more:

Theorem 2. For 0 < θ ≤ 1, with probability at least 1− δ,

PrD[ yf(x) ≤ 0 ] ≤ P̂ rS [ yf(x) ≤ θ ] + Õ

(√
d/θ2 + ln(1/δ)

m

)
.

Proof. Write margf (x, y) = yf(x). Define M = {margf : f ∈ co(H)}. Then

R̂S(M) = Eσ

[
sup

f∈co(H)

1
m

m∑
i=1

(σiyi)f(xi)

]
= R̂S(co(H))

= R̂S(H) (by Lemma 1)
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Next, we define the function φ : R→ [0, 1] by

φ(u) =


1 if u ≤ 0
1− u/θ if 0 < u ≤ θ
0 if u > θ

A plot of φ(u) is shown in the diagram below:

u𝜃0

𝜙(𝑢)

1 𝑢≤𝜃

1 𝑢≤0

Note that for all u ∈ R, we have

1{u ≤ 0} ≤ φ(u) ≤ 1{u ≤ θ}

Moreover, φ is clearly Lipschitz-continuous with Lφ = 1
θ . Therefore, Lemma 2 gives us

R̂S(φ ◦M) ≤ 1
θ
R̂S(M) =

1
θ
R̂S(H) ≤ Õ

(√
d/θ2

m

)
Using the result from a previous lecture1 and the results above, we have

PrD[ yf(x) ≤ 0 ] = ED[1{yf(x) ≤ 0}]
≤ ED[φ ◦ (yf)(x)]

≤ ÊS [φ ◦ (yf)(x)] + 2R̂S(φ ◦M) +O

(√
ln(1/δ)
m

)

≤ ÊS [1{yf(x) ≤ θ}] + Õ

(√
d/θ2

m

)
+O

(√
ln(1/δ)
m

)

= P̂ rS [ yf(x) ≤ θ ] + Õ

(√
d/θ2 + ln(1/δ)

m

)
as desired.

Remark. The larger the value of θ we use, the smaller the Õ(...) term on the RHS. With
larger margins on the training set, we are able to choose larger values of θ while keeping the
P̂ rS [ yf(x) ≤ θ ] term zero (or close to zero), and this will give us a sharper upper bound
on the generalization error. This suggests that by increasing the margin on the training set,
we may expect to see a smaller generalization error.

1In an earlier lecture, we had proved that with probability at least 1− δ, ∀ f ∈ F ,

ED[f ] ≤ bES [f ] + 2 bRS(F) +O

 r
ln(1/δ)

m

!
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