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1 AdaBoost

Algorithm 1 AdaBoost
∀i : D1(i) = 1

m
for t = 1..T do

ht ← Run A on Dt

εt = errDt(ht) = 1
2 − γt

αt = 1
2 ln

(
1−εt
εt

)
∀i : Dt+1(i) = Dt(i)

Zt
×
{
eαt if ht(xi) 6= yi
e−αt if ht(xi) = yi

return H(x) = sign

(
T∑
t=1

αtht(x)
)

In this algorithm, Zt represents a normalizing factor since Dt+1 is a probability distribution.

1.1 Bounding the training error.

In the previous class, we gave the basic intuition behind the AdaBoost algorithm. Now,
having defined the value for αt, we tracked the three rounds of the algorithm in a toy
example (see slides on the course website).

Theorem 1.1. The training error is bounded by the following expression:

ˆerr(H) ≤
T∏
t=1

2
√
εt(1− εt)

= exp

(
−
∑
t

RE(
1
2
|| εt)

)
(By definition of RE)

=
∏
t

√
1− 4γ2

t

(
εt =

1
2
− γt

)

≤ exp

(
−2
∑
t

γ2
t

)
(1 + x ≤ ex)

Consdering the weak learning assumption: γt ≥ γ > 0

≤ e−2γ2T

Step 1: DT+1(i) = exp[−yiF (xi)]
m

Q
t
Zt

, F (x) =
∑
t
αtht(x)



Proof.
Dt+1(i) = Dt(i)

Zt
× e−αtyiht(xi) = Dt(i) e

−yiαtht(xi)

Zt

Then, we can find this expression for t = T , and solve recursively:

DT+1 = D1(i)
e−yiα1h1(xi)

Z1
. . .

e−yiαT hT (xi)

ZT

=
1
m

exp
(
−yi

∑
t
αtht(xi)

)
∏
t
Zt

=
exp [−yiF (xi)]

m
∏
t
Zt

Step 2: ˆerr(H) ≤
∏
t
Zt

Proof.

ˆerr(H) =
1
m

m∑
i=1

1{yi 6= H(xi)} (1)

=
1
m

∑
i

1{yiF (xi) ≤ 0} (2)

≤ 1
m

∑
i

e−yiF (xi) (3)

=
1
m

∑
i

DT+1(i)m
∏
t

Zt (4)

=
∏
t

Zt
∑
i

DT+1(i) (5)

=
∏
t

Zt (6)

(3) follows since e−yiF (xi) > 0 if −yiF (xi) > 0 and e−yiF (xi) ≥ 1 if −yiF (xi) ≤ 0. (4) follows
from Step 1. (6) follows from the fact that we are adding all values over distribution DT+1

so we are getting 1.

Step 3: Zt = 2
√
εt(1− εt)

Proof.

Zt =
∑
i

Dt(i)×
{
eαt if ht(xi) 6= yi
e−αt if ht(xi) = yi

(1)

=
∑

i:yi 6=ht(xi)

Dt(i)eαt +
∑

i:yi=ht(xi)

Dt(i)e−αt (2)

= εte
αt + (1− εt)e−αt (3)
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(2) follows from just decomposing the sum for the two cases. (3) follows from the fact that
eαt or e−αt can be taken outside of the sum, and

∑
i:yi 6=ht(xi)

Dt(i) = εt and
∑

i:yi=ht(xi)

Dt(i) =

1− εt.
We choose αt to minimize the empirical error, so we get:

αt =
1
2

ln
(

1− εt
εt

)
*This is how we choose αt in the algorithm.

1.2 Bounding the generalization error.

Of the many tools we have used over the past classes, we choose the growth function to
bound the generalization error.

H(x) = sign

(∑
t

αtht(x)

)
(1)

= g(h1(x), . . . , hT (x)) (2)

We defined g(z1, z2, . . . , zt) = sign(
∑
t
αtzt) = sign(w · z), with w = 〈α1, α2, . . . , αT 〉, which

represents linear threshold functions in RT . Let us define now the following spaces:

J = {LTFs in RT }
H = weak hypothesis space
F = all functions f (as above), where g ∈ J , h1, h2, . . . , hT ∈ H

As proved in problem 2 of Homework 2, we can set the following bound:

ΠF (m) ≤ ΠJ (m)
T∏
t=1

ΠH(m) (3)

= ΠJ (m) [ΠH(m)]T (4)

We have that VC-dim(J ) = T since we are considering linear threshold functions going
through the origin in RT , and we define VC-dim(H) = d. Then, using Sauer’s Lemma:

ΠJ (m) ≤
(em
T

)T
ΠH(m) ≤

(em
d

)d
Plugging the above inequalities in equation (4):

ΠF (m) ≤
(em
T

)T (em
d

)dT
(5)

Using “soft-oh” notation (not only hides constant but also log factors), given m examples,
with probability at least 1− δ, ∀H ∈ F :

err(H) ≤ ˆerr(H) + Õ
(√

Td+ln 1/δ
m

)
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1.3 Margin

Contrary to what we would expect based on the previous equation, as we increase T (the
complexity) we do not always get a worse generalization error even when the training error
is already 0. The following image is the one in the slides from class that represents this
behavior:

Graph I : Error versus # of rounds of boosting

The reason behind this behavior is that, as we keep increasing the number of rounds, the
classifier becomes more “confident”. This confidence translates into a lower generalization
error. We have:

H(x) = sign

(
T∑
t=1

atht(x)

)
, where at =

αt
T∑
t′=1

αt′

In this way, we are normalizing the weights for each hypothesis, having at ≥ 0,
∑
at = 1.

We define the margin as the difference between the weighted fraction of ht’s voting correctly
and the fraction corresponding to those voting incorrectly. Then for an example x with
correct label y, the margin is:

margin =
∑

t:ht(x)=y

at −
∑

t:ht(x)6=y

at

=
∑
t

atyht(x)

= y
∑
t

atht(x)

= yf(x) where f(x) =
∑
t

atht(x)
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