COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Scribe: Eric Denovitzer

1 AdaBoost

In this algorithm, Z_t represents a normalizing factor since D_{t+1} is a probability distribution.

1.1 Bounding the training error.

In the previous class, we gave the basic intuition behind the AdaBoost algorithm. Now, having defined the value for α_t , we tracked the three rounds of the algorithm in a toy example (see slides on the course website).

Theorem 1.1. The training error is bounded by the following expression:

$$\begin{aligned} e\hat{r}r(H) &\leq \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)} \\ &= \exp\left(-\sum_t RE(\frac{1}{2} \mid\mid \epsilon_t)\right) \\ &= \prod_t \sqrt{1-4\gamma_t^2} \\ &\leq \exp\left(-2\sum_t \gamma_t^2\right) \end{aligned}$$
(By definition of RE)
$$\left(\epsilon_t = \frac{1}{2} - \gamma_t\right) \\ &\leq \exp\left(-2\sum_t \gamma_t^2\right)$$
(1+x \le e^x)

Considering the weak learning assumption: $\gamma_t \ge \gamma > 0$ $\le e^{-2\gamma^2 T}$

Step 1: $D_{T+1}(i) = \frac{\exp[-y_i F(x_i)]}{m \prod_t Z_t}, \ F(x) = \sum_t \alpha_t h_t(x)$

Proof.

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times e^{-\alpha_t y_i h_t(x_i)} = D_t(i) \frac{e^{-y_i \alpha_t h_t(x_i)}}{Z_t}$$

Then, we can find this expression for t = T, and solve recursively:

$$D_{T+1} = D_1(i) \frac{e^{-y_i \alpha_1 h_1(x_i)}}{Z_1} \dots \frac{e^{-y_i \alpha_T h_T(x_i)}}{Z_T}$$
$$= \frac{1}{m} \frac{\exp\left(-y_i \sum_t \alpha_t h_t(x_i)\right)}{\prod_t Z_t}$$
$$= \frac{\exp\left[-y_i F(x_i)\right]}{m \prod_t Z_t}$$

Step 2: $e\hat{r}r(H) \leq \prod_{t} Z_{t}$

Proof.

$$e\hat{r}r(H) = \frac{1}{m}\sum_{i=1}^{m} \mathbf{1}\{y_i \neq H(x_i)\}$$
 (1)

$$= \frac{1}{m} \sum_{i} \mathbf{1}\{y_i F(x_i) \le 0\}$$

$$\tag{2}$$

$$\leq \frac{1}{m} \sum_{i} e^{-y_i F(x_i)} \tag{3}$$

$$=\frac{1}{m}\sum_{i}D_{T+1}(i)m\prod_{t}Z_{t}$$

$$\tag{4}$$

$$=\prod_{t} Z_t \sum_{i} D_{T+1}(i) \tag{5}$$

$$=\prod_{t} Z_t \tag{6}$$

(3) follows since $e^{-y_i F(x_i)} > 0$ if $-y_i F(x_i) > 0$ and $e^{-y_i F(x_i)} \ge 1$ if $-y_i F(x_i) \le 0$. (4) follows from Step 1. (6) follows from the fact that we are adding all values over distribution D_{T+1} so we are getting 1.

Step 3: $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$

Proof.

$$Z_t = \sum_i D_t(i) \times \begin{cases} e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \\ e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \end{cases}$$
(1)

$$= \sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t}$$
(2)

$$=\epsilon_t e^{\alpha_t} + (1-\epsilon_t)e^{-\alpha_t} \tag{3}$$

(2) follows from just decomposing the sum for the two cases. (3) follows from the fact that e^{α_t} or $e^{-\alpha_t}$ can be taken outside of the sum, and $\sum_{i:y_i \neq h_t(x_i)} D_t(i) = \epsilon_t$ and $\sum_{i:y_i = h_t(x_i)} D_t(i) = \epsilon_t$

 $1 - \epsilon_t$.

We choose α_t to minimize the empirical error, so we get:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$$

*This is how we choose α_t in the algorithm.

1.2 Bounding the generalization error.

Of the many tools we have used over the past classes, we choose the growth function to bound the generalization error.

$$H(x) = sign\left(\sum_{t} \alpha_t h_t(x)\right) \tag{1}$$

$$=g(h_1(x),\ldots,h_T(x))$$
(2)

We defined $g(z_1, z_2, \ldots, z_t) = sign(\sum_t \alpha_t z_t) = sign(\mathbf{w} \cdot \mathbf{z})$, with $\mathbf{w} = \langle \alpha_1, \alpha_2, \ldots, \alpha_T \rangle$, which represents linear threshold functions in \mathbb{R}^T . Let us define now the following spaces:

 $\begin{aligned} \mathcal{J} &= \{ \text{LTFs in } \mathbb{R}^T \} \\ \mathcal{H} &= \text{weak hypothesis space} \\ \mathcal{F} &= \text{ all functions } f \text{ (as above), where } g \in \mathcal{J}, \, h_1, h_2, \dots, h_T \in \mathcal{H} \end{aligned}$

As proved in problem 2 of Homework 2, we can set the following bound:

$$\Pi_{\mathcal{F}}(m) \leq \Pi_{\mathcal{J}}(m) \prod_{t=1}^{T} \Pi_{\mathcal{H}}(m)$$

$$= \Pi_{\mathcal{J}}(m) [\Pi_{\mathcal{H}}(m)]^{T}$$
(4)

We have that $\text{VC-dim}(\mathcal{J}) = T$ since we are considering linear threshold functions going through the origin in \mathbb{R}^T , and we define $\text{VC-dim}(\mathcal{H}) = d$. Then, using Sauer's Lemma:

$$\Pi_{\mathcal{J}}(m) \le \left(\frac{em}{T}\right)^T$$
$$\Pi_{\mathcal{H}}(m) \le \left(\frac{em}{d}\right)^d$$

Plugging the above inequalities in equation (4):

$$\Pi_{\mathcal{F}}(m) \le \left(\frac{em}{T}\right)^T \left(\frac{em}{d}\right)^{dT} \tag{5}$$

Using "soft-oh" notation (not only hides constant but also log factors), given m examples, with probability at least $1 - \delta, \forall H \in \mathcal{F}$:

$$err(H) \le \hat{err}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td + \ln 1/\delta}{m}}\right)$$

3

1.3 Margin

Contrary to what we would expect based on the previous equation, as we increase T (the complexity) we do not always get a worse generalization error even when the training error is already 0. The following image is the one in the slides from class that represents this behavior:

Graph I : Error versus # of rounds of boosting

The reason behind this behavior is that, as we keep increasing the number of rounds, the classifier becomes more "confident". This confidence translates into a lower generalization error. We have:

$$H(x) = sign\left(\sum_{t=1}^{T} a_t h_t(x)\right), \text{ where } a_t = \frac{\alpha_t}{\sum_{t'=1}^{T} \alpha_{t'}}$$

In this way, we are normalizing the weights for each hypothesis, having $a_t \ge 0$, $\sum a_t = 1$. We define the margin as the difference between the weighted fraction of h_t 's voting correctly and the fraction corresponding to those voting incorrectly. Then for an example x with correct label y, the margin is:

margin =
$$\sum_{t:h_t(x)=y} a_t - \sum_{t:h_t(x)\neq y} a_t$$

= $\sum_t a_t y h_t(x)$
= $y \sum_t a_t h_t(x)$
= $y f(x)$ where $f(x) = \sum_t a_t h_t(x)$