
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #10
Scribe: José Simões Ferreira March 06, 2013

In the last lecture the concept of Rademacher complexity was introduced, with the goal
of showing that for all f in a family of functions F we have ÊS [f] ≈ E [f]. Let us summarize
the definitions of interest:

F family of functions f : Z → [0, 1]

S = 〈z1, . . . , zm〉

R̂S(F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(zi)

]

Rm(F) = ES

[
R̂S(F)

]
.

We also began proving the following theorem:

Theorem. With probability at least 1− δ and ∀f ∈ F :

E [f] ≤ ÊS [f] + 2Rm(F) +O

(√
ln 1/δ

m

)

E [f] ≤ ÊS [f] + 2R̂S(F) +O

(√
ln 1/δ

m

)
.

Which we now prove in full.

Proof. Let us define:

Φ(S) = sup
f∈F

(
E [f]− ÊS [f]

)
E [f] = Ez∼D [f(z)]

ÊS [f] =
1

m

m∑
i=1

f(zi)

Step 1 Φ(S) ≤ ES [Φ(S)] +O
(√

ln 1/δ
m

)
This was proven last lecture and follows from McDiarmid’s inequality.

Step 2 ES [Φ(S)] ≤ ES,S′

[
supf∈F

(
ÊS′ [f]− ÊS [f]

)]
This was also shown last lecture. We also considered generating new samples T, T ′ by

flipping a coin, i.e. running through i = 1, . . . ,m we flip a coin, swapping zi with z′i if
heads, and doing nothing otherwise. We then claimed that the distributions thus generated
are distributed the same as S and S′, and we noted

ÊS′ [f]− ÊS [f] =
1

m

∑
i

(
f(z′i)− f(zi)

)

which means we can write

ÊT ′ [f]− ÊT [f] =
1

m

∑
i

σi
(
f(z′i)− f(zi)

)
which is written in terms of Rademacher random variables, σi. We now proceed with the
proof.

Step 3 We first claim

ES,S′

[
sup
f∈F

(
ÊS′ [f]− ÊS [f]

)]
= ES,S′,σ

[
sup
f∈F

(
1

m

∑
i

(
f(z′i)− f(zi)

)
σi

)]
.

To see this, note that the right hand side is effectively the same expectation as the left
hand side, but with respect to T and T ′, which are identically distributed to S and S′. Now
we can write

ES,S′,σ

[
sup
f∈F

(
1

m

∑
i

(
f(z′i)− f(zi)

)
σi

)]
≤ ES,S′,σ

[
sup
f∈F

1

m

∑
i

σif(z′i)

]

+ ES,S′,σ

[
sup
f∈F

1

m

∑
i

(−σi)f(zi)

]

where we are just maximizing over the sums separately. We now note two points:

1. The random variable −σi has the same distribution as σi;

2. The expectation over S is irrelevant in the first term, since the term inside the expec-
tation does not depend on S. Similarly, the expectation over S′ is irrelevant in the
second term.

Therefore

ES,S′,σ

[
sup
f∈F

1

m

∑
i

σif(z′i)

]
= ES′,σ

[
sup
f∈F

1

m

∑
i

σif(z′i)

]

= ES′

[
Eσ

[
sup
f∈F

1

m

∑
i

σif(z′i)

]]
= Rm(F)

and, similarly

ES,S′,σ

[
sup
f∈F

1

m

∑
i

(−σi)f(zi)

]
= Rm(F).

2

Step 4 We have thus shown

ES,S′

[
sup
f∈F

(
ÊS′ [f]− ÊS [f]

)]
≤ 2Rm(F).

Chaining our results together, we obtain

Φ(S) = sup
f∈F

(
E [f]− ÊS [f]

)
≤ 2Rm(F) +O

(√
ln 1/δ

m

)
.

We conclude that with probability at least 1− δ and ∀f ∈ F

E [f]− ÊS [f] ≤ Φ(S) ≤ 2Rm(F) +O

(√
ln 1/δ

m

)
.

Therefore, with probability at least 1− δ and ∀f ∈ F

E [f] ≤ ÊS [f] + 2Rm(F) +O

(√
ln 1/δ

m

)
.

This is one of the results we were seeking. Proving the result for R̂S(F) is just a matter
of applying McDiarmid’s inequality to obtain, with probability at least 1− δ

R̂S(F) ≤ Rm(F) +O

(√
ln 1/δ

m

)
.

1 Motivation

The original motivation behind the theorem above was to obtain a relationship between
generalization error and training error. We want to be able to say that, with probability at
least 1− δ, ∀h ∈ H

err(h) ≤ ˆerr(h) + small term.

We note that err(h) is evocative of E [f] and ˆerr(h) is evocative of ÊS [f], which appear
in our theorem. Let us write

err(h) = Pr(x,y)∼D [h(x) 6= y] = E(x,y)∼D [1{h(x) 6= y}]

ˆerr(h) =
1

m

∑
i

1{h(xi) 6= yi} = ÊS [1{h(x) 6= y}]

as per our definitions. We see that, to fit our definition, we must work with functions f
which are indicator functions. Let us define

Z = X × {−1,+1}

and for h ∈ H:
fh(x, y) = 1{h(x) 6= y}.

3

Now we can write:
E(x,y)∼D [1{h(x) 6= y}] = E [fh]

ÊS [1{h(x) 6= y}] = ÊS [fh]

FH = {fh : h ∈ H}.

This allows us to use our theorem to state that:

With probability ≥ 1− δ
∀h ∈ H

err(h) ≤ ˆerr(h) + 2Rm(FH) +O

(√
ln 1/δ

m

)

err(h) ≤ ˆerr(h) + 2R̂S(FH) +O

(√
ln 1/δ

m

)
.

We want to write the above in terms of the Rademacher complexity of H, which we can
do by looking at the definition of Rademacher complexity. We have

R̂S(FH) = Eσ

[
sup
fh∈FH

1

m

∑
i

σifh(xi, yi)

]
.

Now, our functions fh are just indicator functions and can be written fh(xi, yi) =
1−yih(xi)

2 . Further, we are indexing each function by a function h ∈ H. Therefore, we can
just index the supremum with h ∈ H instead of fh ∈ FH. Writing this out gives

R̂S(FH) = Eσ

[
sup
h∈H

1

m

∑
i

σi

(
1− yih(xi)

2

)]

=
1

2
Eσ

[
1

m

∑
i

σi + sup
h∈H

1

m

∑
i

(−yiσi)h(xi)

]
.

Because σi is a Rademacher random variable, its expectation is just 0. For the second
term, we note that because the sample S is fixed, the yi’s are fixed, and therefore the term
−yiσi is distributed the same as σi. Hence, we conclude

R̂S(FH) = 0 +
1

2
Eσ

[
sup
h∈H

1

m

∑
i

σih(xi)

]
=

1

2
R̂S(H).

We have therefore shown

err(h) ≤ ˆerr(h) +Rm(H) +O

(√
ln 1/δ

m

)

err(h) ≤ ˆerr(h) + R̂S(H) +O

(√
ln 1/δ

m

)
.

4

2 Obtaining other bounds

It was alluded to in class that obtaining the above bounds in terms of Rademacher complex-
ity subsumes other bounds previously shown, which can be demonstrated with an example.
We first state a simple theorem (a slightly weaker version of this theorem will be proved in
a later homework assignment).

Theorem. For |H| <∞:

R̂S(H) ≤
√

2 ln |H|
m

.

Now consider again the definition of empirical Rademacher complexity:

R̂S(H) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)

]
.

We see that it only depends on how the hypothesis behaves on the fixed set S. We
therefore have a finite set of behaviors on the set.

Define H′ ⊆ H, where H′ is composed of one representative from H for each possible
labeling of the sample set S by H. Therefore

|H′| = |ΠH(S)| ≤ ΠH(m).

Since the complexity only depends on the behaviors on S, we claim

R̂S(H) = Eσ

[
sup
h∈H′

1

m

m∑
i=1

σih(xi)

]
= R̂S(H′).

We can now use the theorem stated above to write

R̂S(H′) ≤
√

2 ln |ΠH(S)|
m

.

Finally, we recall that after proving Sauer’s lemma, we showed ΠH(m) ≤
(
em
d

)d
, for

m ≥ d ≥ 1. Therefore

R̂S(H) ≤

√
2d ln

(
em
d

)
m

.

We have thus used the Rademacher complexity results to get an upper bound for the
case of infinite |H| in terms of VC-dimension.

3 Boosting

Up until this point, the PAC learning model we have been considering requires that we be
able to learn to arbitrary accuracy. Thus, the problem we have been dealing with is:

5

Strong learning C is strongly PAC-learnable if
∃ algorithm A
∀ distributions D
∀c ∈ C
∀ε > 0
∀δ > 0

A, given m = poly (1/ε, 1/δ, . . .) examples, computes h such that

Pr [err(h) ≤ ε] ≥ 1− δ.

But what if we can only find an algorithm that gives slightly better than an even chance
of error (e.g. 40%)? Could we use it to develop a better algorithm, iteratively improving
our solution to arbitrary accuracy? We want to consider the following problem:

Weak learning C is weakly PAC-learnable if
∃γ > 0
∃ algorithm A
∀ distributions D
∀c ∈ C
∀δ > 0

A, given m = poly (1/ε, 1/δ, . . .) examples, computes h such that

Pr

[
err(h) ≤ 1

2
− γ
]
≥ 1− δ.

We note that in this problem we no longer require arbitrary accuracy, but only that the
algorithm picked be able to do slightly better than random guessing, with high probability.
The natural question that arises is whether weak learning is equivalent to strong learning.

Consider first the simpler case of a fixed distribution D. In this case, the answer to our
question is no, which we can illustrate through a simple example.

Example: For fixed D, define
X = {0, 1}n ∪ {z}
D picks z with probability 1/4 and with probability 3/4 picks uniformly from {0, 1}n
C = { all concepts over X }.

In a training sample, we expect to see z with high probability, and therefore z will be
correctly learned by the algorithm. However, the remaining points are exponential in m,
so that with only poly(1/ε, 1/δ, . . .) number of examples, we are unlikely to do much better
than even chance on the rest of the domain. We therefore expect the error to be given
roughly by

err(h) ≈ 1

2
· 3

4
+ 0 · 1

4
=

3

8
in which case C is weakly learnable, but not strongly learnable.

We wish to prove that in the general case of an arbitrary distribution the following
theorem holds:

Theorem. Strong and weak learning are equivalent under the PAC learning model.

The way we will reach this result is by developing a boosting algorithm which constructs
a strong learning algorithm from a weak learning algorithm.

6

3.1 The boosting problem

The challenge faced by the boosting algorithm can be defined by the following problem.

Boosting problem Given:
(x1, y1), . . . , (xm, ym) with yi ∈ {−1,+1}
access to a weak learner A:

∀ distributions D
given examples from D
computes h such that

Pr

[
errD(h) ≤ 1

2
− γ
]
≥ 1− δ

Goal: find H such that with high probability errD(H) ≤ ε for any fixed ε.

Figure 1: Schematic representation of boosting algorithm.

The main idea behind the boosting algorithm is to produce a number of different dis-
tributions D from D, using the sample provided. This is necessary because running A on
the same sample alone will not, in general, be enough to produce an arbitrarily accurate
hypothesis (certainly so if A is deterministic). A boosting algorithm will therefore run as
follows:

Boosting algorithm
for t = 1, . . . , T

run A on Dt to get weak hypothesis ht : X → {−1,+1}
εt = errDt(ht) = 1

2 − γt, where γt ≥ γ
end
output H, where H is a combination of the weak hypotheses h1, . . . , hT .

In the above, the distributions Dt are distributions on the indices 1, . . . ,m, and may
vary from round to round. It is by adjusting these distributions that the boosting algorithm
will be able to achieve high accuracy. Intuitively, we want to pick the distributions Dt such
that, on each round, they provide us with more information about the points in the sample

7

that are “hard” to learn. The boosting algorithm can be seen schematically in Figure 1

Let us define: Dt(i) = Dt(xi, yi). We pick the distribution as follows:

∀i : D1(i) =
1

m

Dt+1(i) =
Dt(i)

Zt
·
{
eαt if ht(xi) 6= yi
e−αt if ht(xi) = yi

where αt > 0.

Intuitively, all our examples are considered equally in the first round of boosting. Going
forward, if an example is misclassified, its weight in the next round will increase, while the
weights of the correctly classified examples will decrease, so that the classifier will focus on
the examples which have proven harder to classify correctly.

8

