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Lecturer: Rob Schapire Lecture #8
Scribe: Ugne Klibaite February 27, 2013

1 Review From Last Time:

Last class, we discussed the relationship between training and generalization error, and how
we could relate the two.

(x, y) ∼ D
errD(h) = Pr(x,y)∼D[h(x) 6= y]

er̂r(h) =
1
m

m∑
i=1

1{h(xi) 6= yi}

Here, errD is our true or generalization error, which is the error over all samples in
the distribution D. er̂r(h), on the other hand, is the training error and is calculated by
finding the number of incorrectly labeled examples in the training data. We are interested
in relating the two in order to see how a given hypotheses will perform on unseen data after
traning on a sample set.

If we specify that the training set is (x1, y1), ...(xm, ym) and if we can show that with
probability ≥ 1− δ:

∀h ∈ (H) : |err(h)− er̂r(h)| ≤ ε
and if we can find ĥ = argmin

h∈H
er̂r(h)

then: err(ĥ) ≤ min
h∈H

err(h) + 2ε

If our assumptions hold then this means that if we can find the hypothesis in H that
minimizes the training error, we can bound the true or generalization error of this hypoth-
esis to the minimum true error over all hypotheses in H plus 2ε. In order to prove this we
will use a special case of Chernoff bound, Hoeffding’s inequality.

For now we are focusing on the statistical problem of showing that the training error is
close to the generalization error without worrying about computation.

As mentioned at the end of last class, let’s define the random variables X1, ..., Xm, i.i.d.
Xi ∈ [0, 1] for all i = 1, ...,m:

p = E[Xi]

p̂ =
1
m

m∑
i=1

Xi



2 Hoeffding’s Inequality

Hoeffding’s Inequality states that:

Pr[p̂ ≥ p+ ε] ≤ e−2ε2m (1)

Pr[p̂ ≤ p− ε] ≤ e−2ε2m (2)

Combining these two inequalities using the union bound:

Pr[|p̂− p| > ε] ≤ 2e−2ε2m = δ (3)

Another way to say this is:
with probability ≥ 1− δ,

|p̂− p| = |er̂r(h)− err(h)| ≤

√
ln (2

δ )
2m

which means that the difference between training and generalization error decays by some
constant over

√
m as a function of the number of samples.

3 Chernoff Bounds

We will now prove a stronger form of Chernoff bounds, and Hoeffding’s Inequality will follow
as a corollary of this proof. This better bound says:

Pr[p̂ ≥ p+ ε] ≤ e−RE(p+ε||p)m ≤ e−2ε2m (4)

Pr[p̂ ≤ p− ε] ≤ e−RE(p−ε||p)m ≤ e−2ε2m (5)

3.1 Relative Entropy

In order to understand Chernoff bounds we have to take a detour and first define the con-
cept of relative entropy, also known as the Kullback-Leibler divergence.

The notion of KL divergence comes from information theory and can be illustrated using
a simple example from class. Imagine that person A is trying to send a message to person
B. Can we calculate the number of bits necessary to send this message? The obvious initial
approach is to say that there are 26 letters in the alphabet and since k bits can describe 2k

different messages, we simply use log2(26) bits. Rounding this up to 5, we can encode the
alphabet with 5 bits where each letter takes exactly 5 bits (A = 0 0 0 0 0, B = 0 0 0 0 1,
C = 0 0 0 1 0, ...).

However, not all letters are equally likely and we can come up with a more efficient
encoding system where more likely letters take fewer bits and unlikely letters take more (A
= 0 0, Q = 0 1 1 0 1 0 1, ...). This system would use less bits on average to send a message.
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If letters are drawn from a probability distribution P, and P (x) is the probability of
sending a letter x, the optimal way of coding messages from P is to use log2( 1

P (x)) bits for
x. Then:

E[message length] =
∑
x

P (x) log2

1
P (x)

This value is called the entropy of the distribution P and it is possible to show that this
is maximized when P is a uniform distribution.

Now suppose that person A makes a mistake and uses the distribution Q to send the
message where log2( 1

Q(x)) bits are used. Now

E[message length] =
∑
x

P (x) log2

1
Q(x)

expected− optimal =
∑
x

P (x) log2

1
Q(x)

−
∑
x

P (x) log2

1
P (x)

=
∑
x

P (x) log2(
P (x)
Q(x)

)

= RE(P ||Q)

Note: we will be using natural log base instead of base 2.
RE between two numbers will be written with the shorthand:

RE(p||q) = p ln
p

q
+ (1− p) ln(

1− p
1− q

)

3.2 Markov’s Inequality

Markov’s inequality is a simple inequality used to compare the expected value of a random
variable to the probability of that variable being very large in relation to the expected value.

Say X ≥ 0, Markov’s Inequality states:

Pr[X] ≥ t] ≤ E[X]
t

Proof:

E[X] = Pr[X ≥ t] · E[X|X ≥ t] + Pr[X < t] · E[X|X < t]
≥ Pr[X ≥ t] · t

3.3 Proof

We are now ready to prove equation 4. As a first attempt, we let q = p + ε, where p and
ε, and therefore q are fixed. We are trying to upper bound Pr[p̂ ≥ q]. Using Markov’s
inequality we show:
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Pr[p̂ ≥ q] ≤ E[p̂]
q

=
p

q
=

p

p+ ε
(6)

This is equal to less than one but is very weak and doesn’t have the dependence on m we
are looking for. Next, we try a clever trick to make this happen and pass both sides of our
original inequality through a monotonically increasing function to get an equivalent inequal-
ity to work with. This is possible because if f is strictly increasing then p̂ ≥ q ⇔ f(p̂) ≥ f(q).

We will use the form f(x) = eλmx where λ > 0. Our new inequality becomes:

Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq]

≤ E[eλmp̂]
eλmq

Markov’s Ineq.

= e−λmq · E[exp(λ
m∑
i=1

Xi)]

= e−λmq ·
m∏
i=1

E[eλXi ]

≤ e−λmq ·
m∏
i=1

E[(1−Xi) + eλXi] bound eλx by a line

= e−λmq ·
m∏
i=1

[1− p+ eλp]

= e−λmq · [1− p+ eλp]m

= (e−λq[1− p+ eλp])m

= eφ(λ)m

We set φ(λ) = ln[e−λq · (1− p+ eλp)] to get our final result.

Minimizing over λ we find:

λmin = ln
(
q(1− p)
(1− q)p

)
φ(λmin) = −RE(q||p)

This is true for all λ, true for λmin, and gives the earlier bound.

4 McDiarmid’s Inequality

Hoeffding’s inequality shows that the average of a set of random variables is connected to
the expected value of individual random variables. Hoeffding’s Inequality as a corollary of
the bound involving relative entropy can be proven using Taylor’s theorem.

1
m

m∑
i=1

xi → E[
1
m

m∑
i=1

xi]AV G(x1, ..., xm)→ E[AV G(x1, ..., xm)] (7)
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This tells us the rate at which the average converges to the expected value. What other
functions could the average be replaced with and still give these results? Whenever f has
the property that changing one argument does not change f by a lot, that is:

∀(x1, ..., xm, x
′
i) : |f(x1, ..., xi, ..., xm)− f(x1, ..., x

′
i, ..., xm)| ≤ ci.

Let X1, ..., Xm be independent, but not necessarily identical. Then:

Pr[f(X1, ..., Xm) ≥ E[f(X1, ..., Xm)] + ε] ≤ exp
(
− 2ε2∑m

i=1 c
2
i

)
ci = 1

m for AVG, and we get Hoeffding’s inequality for this special case.

4.1 Putting it Together

Theorem: Given m = O( ln |H|+ln 1
δ

ε2
) examples, then with probability ≥ 1− δ,

∀h ∈ H : |err(h)− er̂r(h)| ≤ ε

Proof: for any particular h ∈ H, we have already argued that

Pr[|err(h)− er̂r(h)| > ε] ≤ 2e−2mε2

Pr[∃h ∈ H : |err(h)− er̂r(h)| > ε] ≤ 2|H|e−2mε2 ≤ δ for given m

We can take these bounds and rewrite them by solving for ε, where:

|err(h)− er̂r(h)| ≤ O

√ ln |H|+ ln 1
δ

m

 (8)

This combines the number of training examples, complexity of hypotheses, and how well
the hypothesis fits the training samples.
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