
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #7
Scribe: Huiwen Chang February 25, 2014

1 A Lower Bound on Sample Complexity

In the last lecture, we proved an upper bound about how many examples are needed for
PAC learning involving the VC dimension. Then we started talking about that the VC
dimension also provides a lower bound for learning. While the upper bound gives the
sufficient condition for PAC learning, the lower bound gives the necessary condition which
says if the examples is too small, then the concept is not PAC learnable.

Last time, we gave a false proof of the lower bound. We generate a random training
set, and then choose a concept from C which labels exactly the opposite to the prediction
given by our hypothesis. This is cheating because the concept has to be chosen before the
training set is generated. In the following, we give a correct proof of the lower bound:

Theorem 1. Let d = VC-dim(C). For any algorithm A, there exists distribution D and a
concept c ∈ C, such that if A is given sample S of m ≤ d/2 examples, then

Pr[err(hA) >
1

8
] ≥ 1

8

*An alternative(rougher) statement: if ε ≤ 1/8 and δ ≤ 1/8 then we need more than
d/2 examples for PAC learning.

Proof. According to the definition of the VC dimension, we know that there exist d points
z1, ..., zd shattered by C. Let D be uniform over z1, ..., zd. Let C′ ⊆ C have one representative
for every labeling of the shattered points z1, ..., zd. Then we know |C′| = 2d. Then we choose
c uniformly at random from C′.

Let’s think about two experiments about how to generate variables:

• Experiment 1:
c is chosen uniformly at random from C′.
S is chosen at random (according to D) and labeled by c.
hA is computed from S.
The test point x is chosen (from D).
We try to measure: Pr[hA(x) 6= c(x)].

• Experiment 2:
Unlabeled part of S is chosen.
Random labels c(xi) are chosen for xi ∈ S.
hA is computed from labeled S.
The test point x is chosen.
If x /∈ S then label c(x) is chosen uniformly at random.
We try to measure: Pr[hA(x) 6= c(x)].

Though the order is flipped in the two experiments above, we claim that they produce
the same distribution of random variables and same probability measure. This is because
the unlabeled sample S is generated independently of the choice of the labels, and the
label for x is also chosen independently of the samples S, labels of other points, and the
prediction of hypotheses. So in both experiments, the probability is given over random
variables concept c, sample S, and the test point x. We denote it as Prc,S,x[hA(x) 6= c(x)].
Let’s work on experiment 2, and we have

Prc,S,x[hA(x) 6= c(x)]

≥ Prc,S,x[x /∈ S ∧ hA(x) 6= c(x)]

= Prc,S,x[x /∈ S]︸ ︷︷ ︸
≥1/2 because m≤d/2 and x is uniform chosen

· Prc,S,x[hA(x) 6= c(x)|x /∈ S]︸ ︷︷ ︸
=1/2 because c is a random guess

≥ 1

4

According to marginalization Pr[a] = EX [Pr[a|X]]], we have

Prc,S,x[hA(x) 6= c(x)] = Ec[PrS,x[hA(x) 6= c(x)]]

By the fact that if E[X] ≥ b, then there exists x ∈ X such that x ≥ b, we can know
there exists c ∈ C′ ⊆ C such that

PrS,x[hA(x) 6= c(x)] ≥ 1

4

Using marginalization again, we can get

1

4
≤ PrS,x[hA(x) 6= c(x)] = ES [Prx[hA(x) 6= c(x)]]

= ES [err(hA)]

≤ PrS [err(hA) ≤ 1

8
] · 1

8
+ PrS [err(hA) >

1

8
] (1)

≤ 1

8
+ PrS [err(hA) >

1

8
]

The inequality (1) comes as follows: for X ∈ [0, 1],

E[X] =
∑
x∈X

Pr(x) · x

=
∑

x:x≤1/8

Pr(x)

︸ ︷︷ ︸
Pr[X≤1/8]

· x︸︷︷︸
≤1/8

+
∑

x:x>1/8

Pr(x)

︸ ︷︷ ︸
Pr[X>1/8]

· x︸︷︷︸
≤1

≤ Pr[X ≤ 1

8
] · 1

8
+ Pr[X >

1

8
]

2 Inconsistent Model Hypotheses

So far we have only dealt with the situation in which the hypotheses is consistent, and we
focused on the samples needed for learning in that space, but what to do if you cannot find
a consistent hypotheses? There are several reasons it may not be consistent as follows:

2

• The concept c /∈ H;(H is not powerful enough to represent the truth.)

• c ∈ H, but it’s just a too hard computational problem to find it;

• c may not exist. (We always assume that there’s a target concept c that is a functional
mapping that maps each instance to a label, but the reality is not that case. Con-
sider weather prediction—the forecaster only estimates and reports the probability of
snowing tomorrow. We believe there is an intrinsic randomness, or say it’s too hard
to model in a deterministic form by requiring so much knowledge.)

So now we work with a more realistic model where there might not exist the functional
relationship. We can generalize our usual model: We assume we have examples (x, y) where
x ∈ X, y ∈ {0, 1}. Now we let (x, y) be random according to distribution D on X × {0, 1}.
(Unlike our earlier model, the label y here is random). It follows from the chain rule that:

PrD[(x, y)] = PrD[x] · PrD[y|x]

We can think the process as x being first generated by PrD[x] and then y being generated
according to its conditional distribution PrD[y|x]. In the PAC model where the label is
deterministic, Pr[y|x] is either 0 or 1, while in this new model, it’s between 0 and 1. We
also need to modify the generalization error from errD(h) = Prx∼D[h(x) 6= c(x)] to

errD(h) = Pr(x,y)∼D[h(x) 6= y]

Now, the first question is that, ”With complete knowledge of distribution D, how small
can the generalization error be?” Let’s start with a simpler problem — tossing a coin with
a known bias. The coin comes up heads with probability p. In this case, to minimize the
probability of an incorrect prediction, our strategy is

Head, p > 1
2 ;

Tail, p < 1
2 ;

arbitrary, p = 1
2 .

Consider each x has a coin to flip, so the optimal decision rule is similar with before:

hopt(x) =

{
1, P rD[y = 1|x] > 1

2 ;
0, P rD[y = 1|x] < 1

2 ;

The optimal prediction rule is called the “Bayes Optimal Classifier” or “Bayes optimal
decision rule”, and the optimal possible error errD(hopt) = minh errD(h) is called the
“Bayes error”. It provides a lower bound on the error over all hypotheses regardless of
computational power.

Now, our goal is to minimize errD(h) over h ∈ H. We then introduce a natural approach:
Given examples (x1, y1), ..., (xm, ym) chosen independently at random from D, we try to
minimize the training error with indicator variables(1 if h(xi) 6= yi):

êrr(h) =
1

m

m∑
i=1

1{h(xi) 6= yi} (2)

So suppose you could find ĥ = argminh∈H êrr(h). We also suppose you could show
that, with probability 1− δ, for any h ∈ H,

|êrr(h)− errD(h)| ≤ ε (3)

3

Then for all h ∈ H:

errD(ĥ) ≤ êrr(ĥ) + ε

≤ êrr(h) + ε

≤ errD(h) + 2ε

Therefore, the hypotheses ĥ will have a generalization error close to the lower bound of
the error for all hypotheses in H:

errD(ĥ) ≤ min
h∈H

errD(h) + 2ε

But, this approach has two things to deal with:

• The computational problem about how to minimize the training error in (2);

• The statistical problem in (3) which implies the training error is a good approximation
of true error for all hypotheses in H.

The bound in (3) is also called a “uniform convergence bound”. We also name err(h) as
true/generalization error or true risk, êrr(h) as training/empirical error or empirical risk,
and the approach of minimizing the training error as empirical risk minimization.

In order to prove a uniform convergence bound, we first move to a more abstract setting.
Define random variables X1, ...Xm, i.i.d Xi ∈ [0, 1] for all i = 1, . . . ,m. Let p = E[Xi],
p̂ = 1

m

∑m
i=1Xi. In fact, if we denote Xi to be 1{h(xi) 6= yi}, we can see p̂ is the training

error and p is the generalization error. We want to show how close p̂ is with respect to the
mean p.

Figure 1: Illustration of concentration inequality or tail bound on p̂

Let’s look at the distribution of p̂ in Figure 1, next time, we will show the tail Pr[p̂ >
p + ε] and Pr[p̂ < p − ε] are really small, which is called “tail bounds” or “concentration
inequalities”. In the next lecture, we will provide a proof of a general bound – the Chernoff
bound.

4

